

Promotion of CO2 Assimilation by Stopping of Nox, NP Elimination is Easy Method to Stop Global Warming and to Get Fish for Long Life

Shoichiro Ozaki*

Department of Resource Chemistry, Ehime University, Matsuyama, Ehime prefecture, Japan

*Corresponding author:

Shoichiro Ozaki,
Department of Resource Chemistry, Ehime
University, Matsuyama, Ehime prefecture, Japan

Received: 01 Feb 2026

Accepted: 09 Feb 2026

Published: 12 Feb 2026

J Short Name: ACMCR

Copyright:

©2026 Shoichiro Ozaki. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially

Keywords:

Nox; Nox; Elimination by Ammonia; NP Elimination; Water Clean Center; Iriko; Anti-Aging; Long Life

Citation:

Shoichiro Ozaki, Promotion of CO2 Assimilation by Stopping of Nox, NP Elimination is Easy Method to Stop Global Warming and to Get Fish for Long Life. Ann Clin Med Case Rep® 2026; V15(11): 1-12

1. Abstract

Stop NOx elimination by ammonia. Stop water clean centre. Abandon bonfire inhibition rule. These 3 items are essential to promote CO2 assimilation to stop global warming stop. By increasing the supply of nitrogen and phosphorous, we can get much fish. Eat Iriko (boiled and dried sardine) containing hyaluronic acid. for long life. By ocean dumping of radioactive substance, we can do nuclear fusion and human being will be able to live ten thousand years.

2. Introduction

Since the decision of developed countries to eliminate NOx by ammonia, global warming started. The elimination of NOx and NP from the wastes induced the global warming. Author asked the promotion of CO2 assimilation to stop global warming by stopping NOx and NP elimination in his 230 papers (Ref 1–230). The authors believes that activation of CO2 assimilation is the best method to reduce CO2 and best method to stop global warming.

1. To promote CO2 assimilation. We must increase fertilizer. NOx is a safe and readily available nitrogen fertilizer

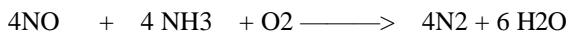
Nitrogen and phosphorous in wastewater are easily obtainable nitrogen, phosphorous fertilizer.

We must increase the concentration of nitrogen and phosphorous. We must increase NOx.

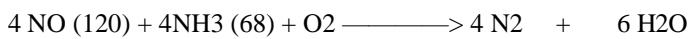
2. Stopping of NOx elimination can stop global warming.

3. Stopping the NP elimination centre can decrease global warming and increase food production.

4. Heat absorption by CO2 assimilation can stop global warming (ref 63).


The decrease in CO2 assimilation is caused by stopping NOx and NP elimination. Stopping NOx and NP elimination will give enough CO2fix global warming will stop, and production of

enough food and rich countries will be possible.


NOx is safe and suitable fertilizer to produce food (ref 7)

NOx is hated as a pollution gas causing illness. Many governments misunderstood the usefulness of NOx and set up stringent laws to eliminate NOx in burned gas. They were forced to eliminate NOx using ammonia. This action caused global warming. Author has insisted that NOx elimination should be stopped. Because the toxicity of NOx is not so severe compared with the significant merit of NOx. NOx is essential for promoting CO2 assimilation for plants to grow and produce food. Thunder produces NOx from N2 and O2. About 4 million thunders in one day, about 30 x 106 t NOx is produced by thunder in one year, and about 20–80% of NOx is produced by thunder worldwide. The year of many thunders gives a good harvest. This fact is written in Kojiki, a 1300 -year-old history book in Japan. Thunder in Japanese character Kaminari rain top on ta (field) bottom. Lightning in Japanese characters Inazuma, derived from Ine (rice plant) and Tsuma (wife). Both are as precious as life. Heavy snow (2–3 m) fell in Hokuriku district, Japan, and produced thunder. This produces much Nox. The concentration of nitrogen in the snow-melted river is high. Toyama Bay produces plankton, fish, crab, and shrimp. Ishikawa prefecture produces rice, and Niigata prefecture produces delicious rice Koshihikari. Author buys fish and rice from Niigata Prefecture and meat from Ishikawa Prefecture. When something is burned, NOx is produced. NOx is a mixture of 90 % NO and 10% NO2. NOx is dissolved in rain, gives nutrient nitric acid, and promotes the growth of plants and plankton. In Japanese coastal areas, snow falls. Moreover, near the sea, Gulf Toyama (Toyamawan) and the surrounding sea are rich in nutrient N from thunder produced NOx and filled with plankton, producing many yellow tails (Buri); therefore, thunder is called Buriokoshi (yellow tai producer). No report as to the severe sickness and dead person caused by NOx is reported. NOx released at no person's district,

such as the seaside far from the house, does not cause severe damage to persons. NOx is essential for the growth of plants, the production of food, and all living forms on the earth. One NOx can fix 25 CO2. One NOx can produce 25 plankton. Promoting CO2 assimilation by stopping NOx and NP elimination is the best method to reduce CO2 to stop global warming and get more food. In around 1980, seven developed countries had a conference to eliminate NOx by inserting ammonia because NOx is toxic.

This decision induced global warming. This reaction stops the recycling of nitrogen. This reaction retard CO2 assimilation and stop. CO2 fixes and produces global warming. When seven developed countries proposed a NOx elimination plan, the Japanese government accepted this NOx elimination plan by making a law to eliminate NOx at all factories. Moreover, the government can stop the factory if NOx is detected at the exit gas. All factories in Japan put ammonia into exit gas, and NOx (around 50 million tons) was eliminated. Then, the concentration of nitrogen 1.2 mg/L in rain becomes zero. The concentration of nitrogen decreased remarkably. Fish production in Japan decreased from 12 million tons to 4 million tons per year. Nori (edible seaweed) production at Seto inland sea stopped. Silasu (whitebait) production in Shizuoka Prefecture decreased remarkably. In 2008, Japan built 1,320 garbage incinerators equipped with ammonia insertion. The Kamakura Nagoe Clean Centre is burning 30 thousand tons of garbage, and forty-five thousand tons of CO2 is released. This exit gas contains NOx, and 40.94 kg of ammonia is used. $40.94 \times 30/17 = 72.24\text{kg NO}$ (molecular weight of NO/molecular weight of NH3) is eliminated. The population of Kamakura is 172,000, and the population of Japan is 120,000,000. $72.24 \times 120,000,000/172,000 = 50,400\text{ kg NO}$ is eliminated in Japan. Ikanago (infant sandeel) production at Hyogo Prefecture was 7,000 tonnes before 1990. It decreased to 200 tonnes after 2010. CO2 produced in developed countries is around 10 billion tons. Moreover, around $10 \times 1/25 = 4$ hundred million tone NOx is produced. To eliminate this NO (90% of NOx is NO), 226 million tone ammonia NH3 is used. The amount of NOx is enormous. Elimination of NOx uses much ammonia and natural gas. These decisions cause significant damage to the agriculture and fish industry, GDP, and protection against global warming. NOx is eliminated by using ammonia. The reaction of nitrogen and hydrogen produces ammonia. The reaction of methane with water produces hydrogen.

400 mill t 226.7 mill t

To make 226.2 mill t NH3, 400 mill t H2 is used.

To make 400 mill tone H2, 80000 mill t CH4 is used. Furthermore, 220 mill t CO2 is produced.

8000 mill t 400 mill t 220 mill t

The governments of the developed countries asked for the addition of ammonia to the exit gas of the factory by the ratio of 400 mill tone NOx to 226.7 mill tone ammonia. The amount of NOx and ammonia is vast. Japan is keeping this arrangement most honestly. Then NOx concentration in the exit gas of Japan is lowest at 0.1 g/kWh, USA is 0.5 g/kWh, Germany is 0.31 g/kWh, and China, India, and Indonesia (no NOx elimination country) are 1.6 g/kWh. GDP ratio 2021/1991: the USA is 3.2, Japan 1.1, and Germany 4.3; developed countries use many fossil fuels to eliminate NOx. The price of electricity is high, and productive industries moved to developing countries. These countries increased their GDP. 2021/1991 China 51.1, India 11.1. No NOx elimination country uses NOx as fertilizer gets much food, and fixes all CO2 produced in his country. GWPR of developed countries is over 1. Japan is 3.3. and criticized as a "carbon country". Therefore, the CO2 increase is zero. 10.22 billion tons of CO2 produces plants like wheat. CO2 produce plant $2/3 \times 30 (1/6 \text{ of molecular weight of C}_6\text{H}_2\text{O}_6) / 44$ (Molecular weight of CO2) weight of his weight. Wheat contains $2/3$ straw of its weight. Wheat grain will be about $1/3$ the weight of the plant. If developed countries stop adding ammonia to the exit gas, the consumption of 8,000 million tons of CH4 can be saved. Moreover, the emission of 220 million tons of CO2 can be saved. Moreover, $400 \text{ million t} \times 25 = 10$ billion t CO2 can be fixed. Accordingly, $220 \text{ mill t} + 10 \text{ bill t} = 10.22 \text{ billion tone CO2}$ can be fixed. The CO2em of developed countries is 10 billion tons. Therefore, $\text{GWPR (CO2em)}/(\text{CO2fix}) = 1$. CO2 increase is zero. 10.22 billion tons of CO2 produces plants like wheat. CO2 produces plant $2/3 \times 30 (1/6 \text{ of molecular weight of C}_6\text{H}_2\text{O}_6) / 44$ (Molecular weight of CO2) weight of their weight. Wheat contains $2/3$ straw in its weight. Wheat grain will be about $1/3$ the weight of the plant. 10.22 billion Tone CO2 can afford $10.22 \text{ billion t} \times 30/44 \times 1/3 = 2.32$ billion tone grain. One kg of wheat is 1.5 \$, and 2.32 billion kg of wheat is 3.48 billion \$. Therefore, if developed countries do not eliminate NP. 2.32 billion tone wheat valuing to 3.48 billion \$ is produced. GDP will increase. Developed countries' economies will improve, and global warming will not happen. Japan produced 12 million tons of fish and 4 million tons of rice before 1980, when NP was not eliminated. With the elimination of NP, only 4 million tons of fish were produced. Therefore, author is proposing a plan to stop global warming by stopping the addition of ammonia to the exit gas (ref 50–59). However, no company stops the addition of ammonia, because developed countries' governments set up unreasonable laws: NOx should be zero at exit gas. If NOx is detected at the exit gas, factory operation is impossible. Therefore, the law forced the addition of ammonia to destroy 50 million tons of NOx, and plants could not grow by the shortage of the nitrogen sources. Production of fish and grain is reduced, and GDP does not increase. Author advises that diminishing the law or top persons of developed countries offers notice that people need not eliminate NOx. Law elimination or notice will activate CO2 assimilation and stop global warming. This is why author is asking to eliminate the

law that forces the addition of ammonia. It is not easy to reduce CO₂. It is, however, simple to reduce GWPR by increasing the CO₂ fixation. An increase of CO₂fix is possible by an increase of NP. To increase NP, stopping the elimination of NP is enough. Developing countries like China, India, and Indonesia use NO_x and NP as fertilizer. CO₂ assimilation is promoted rapidly, the production of agriculture and the fish industry has increased rapidly, and the GDP increase rate is high. On the contrary, NO_x and NP elimination is inhibited in developed countries. CO₂ assimilation decreased. Production of agriculture and fish industry decreased. Economic and social influence are immeasurable significant. We can compare developed countries doing NO_x and NP elimination and developing countries using NO_x and NP as fertilizer (ref 56-64).

This NO_x eliminating reaction has five detrimental disadvantages:

1. This reaction eliminates NO_x, a necessary compound for CO₂ assimilation. 0.4 billion tones (developed country), 0.05 billion tones (Japan).

2. A large amount of CH₄ is necessary to synthesize hydrogen for ammonia. 0.8 billion tones (developed countries), 10 million tones (Japan) of CH₄ is necessary.

3. A large amount of CO₂ is produced to produce hydrogen. 220 million tone (developed country) 27.5 million tone (Japan) CO₂ is produced.

4. Electricity price increase as USA 12 c/kWh Japan 12, Germany 35, UK 15.4, Italy 28 Developing countries China 1.6-4.5, India 6, Indonesia 10.

5. Food production decreases due to the decrease in CO₂ assimilation. Japan's food production ratio decreased from 100% to 37 %. Fish production in Japan decreased from twelve million tons (1980) to 4 million tons (2000). Rice production decreased from 8 million tons to 4 million tons.

The CO₂ produced in developed countries is around 10 billion tons. Moreover, around 10x 1/25 = 4 hundred million tone NO_x is produced. The government of the developed country asked for the addition of ammonia to the exit gas of the factory by the ratio of 400 mill tone NO_x to 226.7 mill tone ammonia. The amount of NO_x and ammonia is enormous. Japan is keeping this arrangement most honestly. Then NO_x concentration in the exit gas of Japan is lowest at 0.1 g/kWh, USA is 0.5 g/kWh, Germany is 0.31 g/kWh, and China, India, and Indonesia (no NO_x elimination country) are 1.6 g/kWh. GDP ratio 2021/1991: the USA is 3.2, Japan 1.1, and Germany 4.3; developed countries use many fossil fuels to eliminate NO_x. The price of electricity is high, and productive industries moved to developing countries. Developing countries increased GDP. 2021/1991 China 51.1, India 11.1. No NO_x elimination country uses NO_x as fertilizer gets much food, and fixes all CO₂ produced in his country. GWPR of developed countries is over 1. Japan is 3.3. If developed countries stop NO_x and NP elimination, developed countries' economies will improve. Furthermore, global warming will not happen. Japan is eliminating 50 mill t NO_x by spending ten

mill t LNG emitting 27.5 mill t CO₂. If Japan stops eliminating NO_x, Japan can fix 50 mill x 25 = 1250 mill tone CO₂. CO₂ grows plankton 2/3 of its weight (30 1/6 of molecular weight C₆H₁₂O₅ /44 CO₂ molecular weight). Fish grow by eating ten times the plankton. 10 bill t CO₂ fix mean 10x 3/4x1/10 = 7.5 bill kg fish production. The fish price is 2 \$ per kg. 2x 75 bill = 150 billion & = 1633 mill \$. However, by eliminating NO_x, 150 billion \$ fish were not produced. Japan produced 12 million fish and four million rice before 1980 at that time there was no elimination. With the elimination of NP, only 4 million fish were produced. Fisherman population decreased keenly 388,990 in 1963 to 151,700 in 2018. The countryside region is suffering from depression and depopulation. GDP has not increased since NP elimination started. The elimination of NP influence not only warms up the earth but also significantly influences the economy. The law to eliminate NO_x by blowing in ammonia to the exit gas and eliminating NP in wastewater should be eliminated sooner. If the law is eliminated and sufficient nitrogen is supplied, fish prediction and GDP will increase. CO₂ produced in developed countries is around 10 billion tons. Furthermore, around 10 x 1/25 = 4 hundred million tone NO_x is produced. To eliminate this NO (90% of NO_x is NO), 226 million tone ammonia NH₃ is used. Author is proposing a plan to stop global warming by stopping the addition of ammonia to the exit gas (ref 50-59). Nevertheless, no company stops the addition of ammonia. Because developed countries' governments set up unreasonable laws, NO_x should be zero at exit gas. If NO_x is detected at the exit gas, factory operation is impossible. Therefore, the law forced the addition of ammonia, and 50 million tons of NO_x were destroyed, and plants could not grow. Production of fish and grain is reduced, and GDP does not increase. Author presented a petition to eradicate the NO_x elimination law. Nevertheless, his petition was rejected without argument because global warming protection is not a legal dispute. (ref 60). Therefore, author is asking this nominator for the Nobel Prize to know if his method is fit. Moreover, he wishes to let the people to know the disadvantage of NO_x elimination via public or mass communications. Waste water clean facilities should be closed (ref 42-49). Japan constructed 2,200 wastewater purification facilities to eliminate NP. Author investigated the Yamazaki waste water purification center at Yamazaki, Kamakura, in Japan (ref 38). This centre covers 96,881 persons. The water of 98,287 m³ containing nitrogen 40 mg/l and phosphorus 4.2 mg/l is treated by an activated sludge process. Air is bubbled for ten hours to give water containing nitrogen 7.5 mg/l and phosphorous 2.73 mg/l. They are consuming 8,841,200 kWh of electricity. The population of Japan is 120 million. This data showed that, if Japan stop wastewater clean activity, 44,900 tone Nitrogen and 17,400 tone Phosphorus can work as fertilizer. Phosphorous is eliminated in one day at this centre. This data indicates 7.34 x 120,000,000/ 96,881 x 365 = 140 million tone Nitrogen, 12.8 million tonnes Phosphorous can work as fertilizer in one year. 140 x 25 = 3,200 million tone CO₂ is fixed and 3,200 million tone plankton can grow and 3,200 x 1/10 = 3.5 million

= 35stone fish will be produced. By stopping the wastewater purification centre, consumption of $884,100 \times 12,000,000,000 / 96,881 = 110$ billion kWh electricity ($100,880/110 = 1.11$ % of total electricity consumption 1,000,880 kWh of Japan) is saved. For the generation of electricity, 59,000 tons of CH₄ are used. By stopping waste water purification, baying of 590,000 tone CH₄ becomes unnecessary, and $590,000 \times 3 = 1,770,000$ t CO₂ emission will stop. Each house must pay a wastewater purification cost (about 30 \$) and a water fee. The people need not pay the wastewater purification fee if the wastewater cleaning centre is closed. If wastewater purification is not done in Japan, $140 \times 25 = 35$ million tone CO₂ is fixed, 35 million tone plankton can grow, and $35 \times 1/10 = 3.5$ million tone fish will be produced. Therefore, the wastewater clean canter should be closed. Phosphorous and nitrogen eliminations in the world is estimated to be ten times of that of Japan. If developed countries stop the elimination of nitrogen and phosphorous by stopping waste water purification centres, 82,950 tone fish will be produced. Moreover, 121,660-tone CO₂ will be fixed. It is not easy to reduce CO₂, but reducing GWPR by increasing the CO₂ fix is straightforward. To increase CO₂ fixation, by the increase of NP concentration in the environment. To increase NP, stop the elimination of NP. To increase N and P, stop the elimination of NP. Developing countries like China, India, and Indonesia use NO_x and NP as fertilizer. CO₂ assimilation is promoted rapidly, the production of agriculture and the fish industry has increased rapidly, and the GDP increase rate is high. On the contrary, CO₂ assimilation is inhibited in developed countries, and agriculture and fish industry production is inhibited. Economic and social influence is immeasurable significant. People can compare developed countries doing NO_x and NP elimination and developing countries using NO_x and NP as fertilizer. (ref 56 and 57). GDP, GWPR (CO₂em/ CO₂fix) comparison of NO_x, NP elimination countries and no NO_x NP elimination countries. Developed countries can get 174.4 billion \$, by stopping NP elimination and getting high GDP, and the GDP ratio 2021/1991 will increase as China. Not only does the elimination of NO_x and NP promote global warming, but also retarding the development of countries and industries. Japan's government considers ammonia a substance that does not produce CO₂ and uses ammonia to eliminate NO_x. CO₂ produced in Japan is 1.25 billion tons. NO_x produced in Japan is 1/25 of 1.25 billion tones, 50 million tonnes. Japan is eliminating 20 times the synthetic fertilizer, 2.5 million tons. Japan officials are trying to make zero generations of CO₂ and also to reduce CO₂ by many methods.

Prediction of GWPR after Stopping NO_x, NP Elimination.

If developing countries stop the elimination of NO_x, NO_x concentration increased to 1.6 g/kWh to bring about the active CO₂ assimilation. CO₂fix will increase. GWPR will decrease from 1.3 to 1, as shown in Table 2 (ref 63). Fish production will increase. Grain production will also increase.

GWPR = CO₂emi/ CO₂fix = 1 Carbon neutral

Author concludes that by stopping NP elimination, developed

countries can get 174.4 billion \$, and the high GDP and GDP ratio of 2025/ 1991 will increase.

Heat absorption by CO₂ assimilation can stop global warming (Ref 29)

On earth, 140 billion tons of fossil fuel is burned, and CO₂ 3.6×10^{10} t is produced. Moreover, 7.4×10^{15} kcal is produced. When we consider the heat produced by animal respiration, 7.4×10^{15} kcal $\times 4.6/3.6 = 9.45 \times 10^{15}$ kcal is produced. The heat of atomic energy also warms the earth. Uranium produces 2×10^{15} kcal heat. The electricity generation capacity of the world is 16,868 tera watt h. Electricity generation by atomic energy is 2,086 tera watt h. Therefore, $7.4 \times 10^{15} \times 2,986 / 10,868 = 2.02 \times 10^{15}$ kcal evolved by atomic energy.

The heat evolved by animals also warms the earth. Humans eat 1,000 kcal of food daily and release 1,000 kcal of heat daily. Assuming the population of the world as 7.6 billion, humans release $1,000 \times 365 \times 76 \times 10^9 = 2.8 \times 10^{16}$ kcal in one year. Animals other than human beings, caw, birds, whales, and seals are producing heat. We can estimate the same as a human being 2.8×10^{16} kcal. Therefore, total heat from fossil burning produces 7.4×10^{16} kcal, and atomic energy produces 2.02×10^{15} kcal. Human beings produce 2.8×10^{16} kcal. Other animals produce 2.8×10^{16} kcal.

The total heat produced is $(7.4 + 0.202 + 2.8 + 2.8) \times 10^{16} = 13.002 \times 10^{16}$ kcal. We must absorb 13.002×10^{16} kcal by CO₂ assimilation. One moles of CO₂ (44 g) and water (18 g) absorb 114 kcal sun's heat to carbohydrate and 32 g oxygen. If 51 billion t (= 5.1×10^{16} g) CO₂ assimilation occurs, $114 \times 5.1 \times 10^{16} / 44 = 13.136 \times 10^{16}$ kcal can be absorbed. Heat production 13.002×10^{16} kcal is almost the same as heat absorption 13.136×10^{16} kcal.

GWPR = Heat production/ heat absorption = 13.002×10^{16} kcal./ 13.136×10^{16} kcal. = 1

CO₂ assimilation must be promoted by stopping NO_x elimination and purifying waste water. By stopping NO_x elimination. 1.44 billion tone NO_x can fix $14.4 \times 25 = 36.0$ billion tone CO₂. The amount of NP in drainage is around 0.5 billion tones. Using this 0.5 billion tone NP, people can fix $0.5 \times 25 = 12.5$ billion tone CO₂. By adding $36.0 + 12.5 = 48.5$ billion tones, CO₂ can be fixed. And we can absorb 13.1×10^{16} kcal. Heat absorption by CO₂ assimilation is essential to control the earth's temperature to maintain the habitable and comfortable temperature for the preset all life forms.

Anti-aging

Author is now 95 years old and testing my self which is best method to live long with high producing manuscript.

How can I live long I eat night food at mid night one banana, 20 g Iriko (boiled and dried sardine) and 2 Hadrosaur (Kamakura cooky) then thinking and half sleeping (Ref 26,27,48,65-70). Anti-aging and long life is dream of persons for thousand years. Average life of Japanese is men 80.5(third), women 86.83 (top in the world) I wonder why live longer than other countries. I

believe that Japanese food based on fish is and good for long life. Fish contain glucosamine, hyaluronic acid and chondroitin. Glucosamine, hyaluronic acid are now used as health food by many persons in Japan. About 7 million persons are drinking and eating these materials and enjoying health and long life. I found anti-aging reagent. Serin-(beta- D-3-sulpho-glucurosy) (1-3)-2-acetoamino-2-deoxy-glucopyranosid (ref 65). This anti-aging reagent is produced by Klotho (anti-aging gene) from glucosamine, hyaluronic acid, chondroitin. and contribute for anti-aging and long life. Klotho is a regulator of Calcium homeostasis working with produced disaccharide Ref 64) Klotho makes disaccharide from glucosamine and glucuronic acid and gives stable Ca homeostasis and consequent health and anti-aging. Best food for anti-aging (ref 71). Hyaluronic acid was isolated from eye of cow. Eye and joint contain much glucosamine, hyaluronic acid and chondroitin. Fish contain much glucosamine, hyaluronic acid and chondroitin. Iriko (boiled and dried sardine) is best fish for anti-aging. I eat 10 g Iriko every night.

Ocean Dumping of Radio Active Substance (ref 39,59)

The London protocol inhibits the dumping of water with more than de minimis levels of radioactivity Japan was hit by a big earthquake 2011 and some atomic energy facilities released

radioactive waste water. In the incident, a large amount of radioactive substances are produced by decommissioning of nuclear reactor. Dumping of radioactive waste is not possible by London dumping convention. Japan keeping London Dumping convention most honestly. Therefore, Japan is producing a large amount of CO₂ (presume 0.3 billion tons) for its treatment and storage to avoid troubles with other countries and yet Japan cannot eliminate such radioactive materials. Japan cannot export agriculture products to other countries to other countries, because Japan is keeping radioactive compounds in Japan. We must increase atomic energy electricity generation by uranium. Plutonium and nuclear fusion Radioactive waste substance must increase. We must find safe way to throw radioactive substance in deep sea. Sea has infinite amount of water and 10000 m deep and wide. We can dilute to almost zero concentration. Therefore, radioactive liquid can be diluted to almost zero concentration. Solid radioactive substance can sink to the bottom by as is or after covered with paper or cement.

3. Conclusion

Stopping of ammonia addition to eliminate NO_x and stopping of water clean centre can activate CO₂ activation and can get much grain and fish and can get long life.

Table 1: CO₂em (CO₂ emission), NO_x (NO_x production), NO_xc (NO_x concentration at exit gas), Dump (Wastewater dumping), Fixable CO₂, GWPR (global warming protection ratio), GDP (GDP ratio 2021/1991) of 13 countries.

Country	CO ₂ emit	NO _x	NO _x con	Wdunp	FixabllCO ₂	GWPR	GDP
	Hmilt	Hmillt	g/kWh		Hills		2021/1991
World	510	16.5				1.3	
China	196.4	4.25	1.6	Do	100	1	51.1
India	24.6	1	1.6	Do	32	0.76	11.1
Indonesia	5	0.2	1.6	Do	19	0.3	
USA	51	2	0.5	No	95	0.53	3.7
Japan	12	0	0	No	3.8	3.3	1.1
Russia	19.6	0.63			32	0.61	
Germany	7.6	1	1	No	2.2	2.2	4.3
Uk	4	0.16	1.3	No	2.4	1.2	3.3
Italy	3.5	0.14	0.5	No	3	1.2	
France	0.12			No	6.4	0.4	
Canada	5.6	0.22	1.3	No	199	0.06	
Iran	6.3	0.025			1.6	3	
Turkey	4	0.16			7.6	0.5	

Table 2: Prediction of CO₂em (CO₂ emission), NO_x (NO_x production), NO_xc (NO_x concentration at exit gas), Dump (Wastewater dumping), Fixable CO₂, GWPR (global warming protection ratio), GDP (GDP ratio 2025/1991) at 2025 of 13 countries.

Country	CO ₂ emit	NO _x	NO _x con	Wdunp	FixabllCO ₂	GWPR	GDP
	Hmilt	Hmillt	g/kWh		Hills		2025/1991
World	510	16.5			510	1	
China	196.4	4.25	1.6	Do	100	1	1
India	24.6	1	1.6	Do	32	0.76	15
Indonesia	5	0.2	1.6	Do	19	0.3	
USA	51	2	1.6	Do	95	0.53	10
Japan	8	0.5	1.6	Do	8	1	10

References

- Shoichiro Ozaki. Recycle of nitrogen and phosphorous for the increase of food production. *New Food Industry*. 1993; 35: 33-39.
- Shoichiro Ozaki. Methods to protect global warming. *Adv Tech Biol Med*. 2016; 4: 181.
- Shoichiro Ozaki. Methods to protect global warming. Food production increase way. *New Food Industry*. 2016; 58: 47-52.
- Shoichiro Ozaki. Global warming can be protected by promotion of CO₂ assimilation using NO_x. *Journal of Climatology & Weather Forecasting*. 2016; 4:2: 1000171.
- Shoichiro Ozaki. Global warming can be protected by promotion of plankton CO₂ assimilation, *Journal of Marine Science: Research & Development*. 2016; 6: 213.
- Shoichiro Ozaki. Method to reactivate the fish industry. *New Food Industry*. 2017; 59: 61-70.
- Shoichiro Ozaki. NO_x is Best Compound to Reduce CO₂. *Eur. J. Exp. Biol*. 2017; 7: 12.
- Shoichiro Ozaki. Protection of global warming and burn out of fossil fuel by promotion of CO₂ assimilation. *Journal of Marine Biology & Oceanography*. 2017; 6: 2.
- Shoichiro Ozaki. Promotion of CO₂ assimilation supposed by NO_x is best way to protect global warming and food production. *Artiv of Pet-Envilron Biotechnol*. 2017; 02: a110.
- Shoichiro Ozaki, Promotion of CO₂ assimilation supported by NO_x is best way to protect global warming. *J. Marine Biol Aquacult*. 2017; 2.
- Shoichiro Ozaki, Stopping of NO_x elimination is easy way to reduce CO₂ and protect global warming. *J. Environ Sci Public Health*. 2017; 1 (1): 24-34.
- Shoichiro Ozaki, Stopping of NO_x elimination is clever way to reduce CO₂ and to increase fish production. *J. of Cell Biology & Immunology*. 2017; 1e: 102.
- Shoichiro Ozaki. Effective uses of NO_x and drainage are clever way to protect global warming and to increase fish production. *Oceanography & Fisheries*. 2017; 4(4).
- Shoichiro Ozaki. NO_x Elimination and Drainage NP Elimination should be stopped for the production of fish and for the protection of global warming. *Journal of Fisheries and Aquaculture Development*. 2017; 05: 125.
- Shoichiro Ozaki. Let's enjoy civilized life using limited amount of fossil fuel. *Journal of Aquaculture & Marine Biology*. 2017; 6(3): 00158.
- Shoichiro Ozaki. Method to fit Paris agreement for protection of global warming. *International Journal of Waste Resources*. 2017; 7-4.
- Shoichiro Ozaki. Method to protect global warming and to produce much fish by promotion of plankton growth. *New Food Industry*. 2018; 60: 88-94.
- Ozaki Shoichiro. Method to protect global warming by promotion of plankton CO₂ assimilation. *Rikuryou Science*. 2018; 61: 23.
- Shoichiro Ozaki. Effect of NO_x elimination on electricity price, fish production, GDP, and protection of global warming. *International J of Waste Resources*. 2018.
- Shoichiro Ozaki. How to fix carbon dioxide the same amount as emission for the protection of global warming. *Research & Development in Material Science*. 2018.
- Shoichiro Ozaki. Stop of NO_x elimination and stop of wast water purification are easy methods to protect global warming. *J of Immunology and Information Diseases Therapy*. 2018.
- Shoichiro Ozaki. Climate can be regulated by effective use of NO_x and wastewater NP. *Biomedical Research and Reviews*. 2018.
- Shoichiro Ozaki. Promotion of Plankton CO₂ assimilation by effective use of NO_x and NP is best method to produce much fish and protect global warming. *J of Marine Science Research and Oceanography*. 2018.
- Shoichiro Ozaki. Promotion of plankton CO₂ assimilation by NO_x is best way to protect global warming and to get best climate. *International J of Earth and environmental Science*. 2018.
- Shoichiro Ozaki. Promotion of plant growth by NO_x is best method to reduce CO₂ and to protect global warming. *Current Trends in Oceanography and Marine Science*. 2018; 01: 1-4.
- Shoichiro Ozaki. Fish is best food to get anti-aging and long life. NO_x elimination should be stopped to produce much fish and to protect global warming. *Jacobs Journal of physiology*. 2018; 017.
- Shoichiro Ozaki. Fish is Best Food to Get Anti-Aging and Long Life. *J of Aging and Neuropsychology*. 2018.
- Shoichiro Ozaki. NO_x and NP in waste water fix CO₂ and control global warming and climate. *International J of Biochemistry and Physiology*. 2018; 3(4).
- Shoichiro Ozaki. The effect of the increase of NO_x and CO₂ on grain and fish production, protection of global warming and climate. *International Journal of Earth Science and Geology*. 2019; 1(1): 6-10.
- Shoichiro Ozaki. Complete use of NO_x and NP is essential for the increased production of food and protection of global warming. *Inter. J. Innovative Studies in Aquatic Biology and Fisheries*. 2019; 3(1): 1-6.
- Shoichiro Ozaki. Why global warming is progressing. Promotion of CO₂ assimilation is best method to protect global warming. *Rikuryou Science*. 2019; 62: 16-18.
- Shoichiro Ozaki. Complete use of NO_x and NP is essential for the increased production of food and protection of global warming. *Inter.J. Innovative Studies in Aquatic Biology and Fisheries*. 2019; 3(1): 11-15.
- Shoichiro Ozaki. Increase of CO₂ and NO_x promote CO₂ assimilation, CO₂ fix and food production. *Advances in Bioengineering & Biomedical Science Research*. 2019; 2: 1-6.
- Shoichiro Ozaki. Promotion of CO₂ assimilation by effective use of NO_x and NP is best method to produce much fish and protect global warming. *EC Agriculture*. 2019; 5: 492-497.
- Shoichiro Ozaki. Why fish production of Japan decreased. Why global warming is progressing. *New food Industry*. 2019; 787-793.
- Shoichiro Ozaki. In pure water, no fish can live. Water purification promote global warming, decline of countries. *Rikuryou Science*. 2020; 63: 24-29.
- Shoichiro Ozaki, NO_x elimination, and NP elimination are pro-

moting global warming. EC Agriculture. 2020; 6: 1-8.

38. Shoichiro Ozaki. Purification of water and air is promoting global warming and country decline. Journal of Marine Science and Oceanography. 2020; 1-4.

39. [39] Shoichiro Ozaki, Relation of London Dumping Convention and Global Warming. If Developed Countries stop NP and NOx Elimination, CO2 Assimilation Increase and Global Warming Will Stop. International J of Pollution Research, 2020, 3, 115–119.

40. Shoichiro Ozaki. Global warming will stop if developed countries stop NOx and NP elimination. J. of Environmental Sci. Current Research. 2020; 022.

41. Shoichiro Ozaki. Stopping of NOx, NP Elimination at developed countries is easy method to protect global warming. J Bacteriology and Myology. 2020; 7(4): 1137.

42. Shoichiro Ozaki. In pure water no fish can alive. Water purification promote global warming and decline region and countries. New Food Industry. 2020; 62(8): 615-620.

43. Shoichiro Ozaki. Promotion of recycle of carbon, nitrogen and phosphorous is essential for protection of global warming and increase of national wealth. American J of Humanities and Social Science. 2020;13.

44. Shoichiro Ozaki. Stopping of NOx and NP elimination at developed countries is essential for the promotion of food production and protection of global warming. Journal of Soil Science and Plant Physiology. 2020; 2 (2): 1-10.

45. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping NOx, NP elimination is best method to produce much food and to protect global warming. American J of Engineering, Science and Technology. 2020; 1-15.

46. Shoichiro Ozaki, Stopping of NOx, NP elimination is easy method to protect global warming. Journal of Research in Environmental and Earth Science. 2020; 12-21.

47. Shoichiro Ozaki. Method to protect global warming to fit Paris agreement and to enrich the countries. Rikuryou Science. 2021; 64: 32-38.

48. Shoichiro Ozaki, Method to protect global warming and to get long life. International Journal of Clinical Case Reports. 2020; 8(2) 002-16.

49. Shoichiro Ozaki. Aquaculture of plankton and fish by fertilizer is best way to protect global warming. Acta Scientific Biotechnology. 2021; 2: 13-22.

50. Shoichiro Ozaki. Promotion of CO2 assimilation by NOx, NP is easy method to protect global warming to get high GDP. Open access Research J of Biology and Pharmacy. 2021: 02(02): 063-086.

51. Shoichiro Ozaki. Promotion of CO2 assimilation by sufficient supply of nitrogen and phosphorous is easiest method to fit Paris agreement and to protect global warming and to get national wealth. International Journal of Science and Research Archive. 2021; 04(01): 092-105.

52. Shoichiro Ozaki. Stop NOx, NP elimination, and promotion of CO2 assimilation will stop increase of CO2 and, fit Paris agreement and, increase food, and enrich country. Rikuryou Science. 2022; 65: 37-47.

53. Shoichiro Ozaki. Recycle of nitrogen, phosphorous is essential for protection of global warming. World Journal of Advanced Science and Technology. 2022; 01(01): 015-030.

54. Shoichiro Ozaki, Method to achieve carbon neutral and to fit Paris agreement and to protect global warming. World Journal of Advanced Science and Technology. 2022; 02(01): 022-031.

55. Shoichiro Ozaki, Sure method to protect global warming and to increase GDP. New Food Industry. 2022; 64(12): 799-802.

56. Shoichiro Ozaki, Environmental measures inhibit CO2 assimilation, inhibit food production, make worse economy, and promoting global warming. GSC Advanced Research and Reviews. 2022; 13(02): 245-257.

57. Shoichiro Ozaki. Environmental measures, inhibit food production, make worse economy and promoting global warming. Rikuryou Science. 2023; 66: 35-42.

58. Shoichiro Ozaki. Stopping of NOx, NP elimination is easiest method to stop global warming. International Journal of Scientific Research Updates. 2023; 05(01): 067-078.

59. Shoichiro Ozaki, Promotion of CO2 assimilation by stopping of NOx, NP elimination is easy method to stop global warming and to growth. International Journal of Science and Research Archives. 2023; 08(02): 295-304.

60. Shoichiro Ozaki. NOx should be recycled by stoping of NOx elimination by ammonia. Waste water purification center should be closed. GSC Advanced Research and Reviews. 2023; 15(02): 113-120.

61. Shoichiro Ozaki. NOx eliminations of developed countries induced global warming. Let's stop NOx and NP elimination, stop global warming, and get much food and a rich country. Rikuryou Science. 2023; 66: 51.

62. Shoichiro Ozaki. NOx, NP elimination of developed countries induced global warming. Let stop NOx, NP elimination, let stop global warming, let produce much food, and let make rich countries. Open Access Research Journal of Biology and Pharmacy. 2023; 09(02): 057-066.

63. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping NOx, NP elimination is best method to absorb greenhouse gas CO2, to stop global warming, to get much food and to growth. World Journal of Biology Pharmacy and Health Sciences. 2023; 16(03): 085-093.

64. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping NP elimination is best method to stop global warming International Journal of Scholarly Research and Reviews. 2024; 04(02): 049-053.

65. Shoichiro Ozaki. Sulpho disaccharides co-working with Klotho. Studies on structure, structure activity relation and function. World of Pharmacy and Pharmaceutical Sciences. 2015; 4: 152-175.

66. Shoichiro Ozaki. Glucosamine Derivatives Sulphodisaccharides Co-working with Klotho Nutrition and Food. 2015; 5: 416-420.

67. Shoichiro Ozaki. Synthesis of Anti-Aging Reagents: Sulpho Disaccharide Co-working with Klotho Anti Aging Gene Arch Med. 2015; 7: 17

68. Shoichiro Ozaki. Nutrition for Good Health, Anti-aging and Long life. Hyalulonic Acid, _Glucosamine and Chondroitin Maternal and Pediatric Nutrition Journal. 2015; 102.

69. Shoichiro Ozaki. Food Containing Hyaluronic Acid and Chondroitin is Essential for Anti-Aging International Journal of Aging & Clinical Research. 2016; 1: 101

70. Shoichiro Ozaki. Toward Anti-Aging and Long-Life Jacobs Journal of Physiology. 2016; 2(1): 012.

71. Shoichiro Ozaki. Food useful for anti-aging New Food Industry. 2016; 58: 81-8493.

72. Akiyama Takahiko, Nishimoto Hiroyuki, Ozaki, Shoichiro. Diastereoselective reduction of α Watanabe. Second International Symposium on Nucleic. Absolute configuration of 4-a -D-glucopyranosyl-myo-inositol, enzymic transglycosylation product. Journal of Carbohydrate Chemistry. 1993; 12(6): 685-92.

73. Akiyama Takahiko, Takechi Naoto, Shima Hiroaki Ozaki. Anchimerically assisted demethylation of methyl ethers in inositol derivatives with an aluminum chloride-sodium iodide system. Chemistry Letters.1990; 1881-4.

74. Watanabe, Yutaka, Nakamoto, Chikara. Glycosylation using glycosyl phosphite as a glycosyl donor. Tetrahedron. 1994; 50(22): 6523-36.

75. Watanabe, Yutaka. Easy access of optically-keto esters bearing chiro-inositol derivatives as chiral auxiliaries. Tetrahedron Letters. 1991; 32(10): 1335-8.

76. Akiyama, Takahiko; Nishimoto, Hiroyuki; Ishikawa, Keiichiro; Ozaki, Shoichiro. Diastereoselective addition of organometallics to a-keto esters bearing chiro-inositol derivatives as chiral auxiliaries. Chemistry Letters. 1992; (3): 447-50

77. Watanabe, Yutaka, Fujimoto. A novel deacylation method using Grignard reagent without affecting the neighboring base-sensitive functional groups. Journal of the Chemical Society, Chemical Communications. 1992; 9: 681-3.

78. Ling, Lei, Watanabe, Yutaka. A new efficient method for resolution of myo-inositol derivatives by enzyme catalyzed regio- and enantioselective esterification in organic solvent. Tetrahedron Letters. 1992; 33(14): 1911-14.

79. Ozaki, Shoichiro, Uemura, Atsuhiko. Enzyme aided regio-selective acylation and deacylation of nucleosides. Nucleic Acids Symposium Series. 2019; 53-4.

80. Ling, Lei, Ozaki. Enzymic resolution of the sterically hindered myo-inositol derivative. Bulletin of the Chemical Society of Japan. 1995; 68(4): 1200-5.

81. Akiyama, Takahiko. Trimethylsilyl chloride-tin (II) chloride-anisole: a novel selective p-methoxybenzyl ether cleavage reagent. Synlett. 1992; (5): 415-16.

82. Akiyama, Takahiko, Hirofushi. Aluminum chloride - N, N-dimethylaniline: a novel benzyl and allyl ether cleavage reagent. Bulletin of the Chemical Society of Japan. 1992; 65(7): 1932-8.

83. Watanabe, Yutaka, Ishimaru. Proximately assisted and chemoselectively cleavable protecting groups for alcohols, 2-[2-(aryl-methoxy)ethyl] benzoic esters. Chemistry Letters. 1994; (11): 2163-6.

84. Watanabe, Yutaka, Hyodo, Nobuyuki. Dibenzyl phosphorofluoridate, a new phosphorylating agent. Tetrahedron Letters. 1988; 29(45): 5763-4.

85. Iwasaki, Hirohide, Nakamura, Takeshi. 2-Aminoethyl diphenylborinate analogues: Selective inhibition for store-operated Ca²⁺ entry. Biochemical and Biophysical Research Communications. 2007; 352(2): 277-282.

86. Mikoshiba, Katsuhiko, Ozaki, Shoichiro. Preparation of bisboron compounds controlling calcium concentration in cells. PCT Int. Appl. 2007; 118.

87. Mikoshiba, Katsuhiko, Ozaki. Preparation of phenylborinic acid, poly(arylhydroxyborane), and their esters as intracellular calcium concentration regulators. Jpn Kokai Tokkyo Koho. 2009; 138.

88. Mikoshiba, Katsuhiko, Nukina. Preparation of phenylboron compounds as polyglutamine aggregation inhibitor. 2010; 241.

89. Goto, Jun-Ichi, Suzuki, Akinobu Z. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca²⁺ entry via STIM proteins. Cell Calcium. 2010; 47(1): 1-10.

90. Suzuki, Akinobu Z, Ozaki. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorganic & Medicinal Chemistry Letters. 2010; 20(4): 1395-1398.

91. Ozaki, Shoichiro, Bauer O. 2-Aminoethyl diphenylborinate (2APB) analogues: regulator of Ca²⁺release and consequent cellular process Biochemical and Biophysical Research Communications. 2013; 441: 286-290.

92. Ozaki Shoichiro. 2-Aminoethyl diphenylborinate(2APB) analogues. Part 2. Regulator of Ca²⁺ release and consequent cellular processes. Archives of Physiology. 2014; 1-6.

93. Ozaki Shoichiro. 2-Aminoethyl diphenylborinate(2APB) analogues. Part 4. Poly-boron compounds. Regulators of Ca²⁺ release and consequent cellular processes. Bioengineering & Biomedical Science. 2014; 134.

94. Ozaki, Shoichiro, Ebisui, Etsuko. Potent transglutaminase inhibitors, aryl β -aminoethyl ketones. Bioorganic & Medicinal Chemistry Letters. 2010; 20(3): 1141-1144.

95. Ozaki, Shoichiro, Ebisui, Etsuko. Potent transglutaminase inhibitors, Dithio β -aminoethyl ketones. Bioorganic & Medicinal Chemistry Letters. 2011; 21: 377-379.

96. Bauer O. Peter, Hudec. Genetic ablation and chemical inhibition of IP3R1 reduce mutant Huntington aggregation. Biochemical and Biophysical Research Communications. 2011; 416: 13-17.

97. JT Zimmerman, M Burger, E Toshiro, Y Kondo. Boron based inhibitor of acyl protein thioesterases 1 and 2. Chembiochem. 2013; 14: 115-122.

98. Ozaki Shoichiro. Aminoethyl diphenylborinate (2APB) Analogues: Part 3 Regulators of (HuntingtonAggregation and Transglutaminase. J Bioengineering & Biomedical Science. 2014.

99. Ozaki Shoichiro. Sulfo disaccharides co-working with Klotho. Studies on structure, structure activity relation and function. World J of Pharmacy and Pharmaceutical Sciences. 2015; 4: 152-175.

100. Ozaki Shoichiro. Glucosamine Derivatives. Sulfo disaccharides co-working with Klotho. *Nutrition and Food Science*. 2015; 5: 416.

101. Ozaki Shoichiro. Synthesis of anti-ageing reagent Sulfo disaccharide co-working with anti-aging gene. *Archeves of Medicines*. 2015; 6:17.

102. Ozaki Shoichiro. Glucosamine Derivatives. Sulfo disaccharides co-working with Klotho. *Nutrition and Food Science*. 2015; 5: 416.

103. Ozaki Shoichiro. Synthesis of anti-ageing reagent: Sulfo disaccharide co-working with anti-aging gene. *Archeves of Medicines*. 2015; 7: 6:17

104. Ozaki Shoichiro. Nutrition for good health, anti-aging and long life. Hyaluronic acid,glucosamine and chodroitin. *Maternal and Paediatric Nutrition Journal*. 2015; 1: e102.

105. Ozaki Shoichiro. Food containing hyaluronic acid and chondroitin is essential for anti-aging. *International J of Aging & Clinical Research*. 2016; 1: 101.

106. Ozaki Shoichiro. Toward anti-aging and long life. *Jacobs Journal of Physiology*. 2016; 2(1): 12.

107. Ozaki Shoichiro. Secret of anti-aging: Anti-aging food containing glucosamine, hyaluronic acid and chondroitin. *Jacobs Journal of Physiology*. 2016; 2(1): 13-17.

108. Ozaki Shoichiro. Recycle of nitrogen and phosphorous for the increase of food production *New Food Industry*. 1993; 35: 10 33-39.

109. Ozaki Shoichiro. Methods to protect global warming. *Adv Tech Biol Med*. 2016; 4: 181.

110. Ozaki Shoichiro. Methods to protect global warming, Food production increase way. *New Food Industry*. 2016; 58: No8 47-52.

111. Ozaki Shoichiro. Global warming can be protected by promotion of CO2 assimilation using NOx. *Journal of Climatology & Weather Forecasting*. 2016; 4: 1000171.

112. Ozaki Shoichiro. Global warming can be protected by promotion of plankton CO2 assimilation. *Marine Science:Research & Development*. 2016; 6: 6.

113. Shoichiro Ozaki. Recent advice in Isocyanate chemistry *Chemical Reviews*. 1972; 72: 457-496.

114. Shoichiro Ozaki. Toward Anti-aging and Long Life *Jacobs Journal of Physiology*. 2016; 2(1): 0112.

115. Shoichiro Ozaki Toward Anti-aging and Long Life *Jacobs Journal of Physiology*. 2016; 2(1): 0112

116. Shoichiro Ozaki. Signal transduction and discovery of regulator of Ca release and cellular process *J. of Medicinal Research Prac*. 2014; 03(02): 20-24.

117. Shoichiro Ozaki. Chemical Approach to Signal Transduction by Inositol Triphosphate Bioengineering & Biomedical Science. 2014; 4-1.

118. Shoichiro Ozaki, Peter O. Aminoethyl Diphenylborinate (2-APB) Regulators of Ca 2+ release and consequent cellular processes *Biochemical and Biophysical Research Communications*. 2013; 441: 286-290.

119. Shoichiro Ozaki. Sulpho Disaccharide co-working with Klotho Studies on structure, activity relation and function. *World Journal of Pharmacy and Pharmaceutical Science*. 2015.

120. Shoichiro Ozaki. Ca2+Huntington Aggregation and Transglutaminase *J. Bioengineering & Biomedical Science*. 2014; 4:1

121. Shoichiro Ozaki. Signal Transduction and Discovery of Regulator of Ca Release and cellular process and cellular process *Journal of medical research and practice*. 2014; 5-9.

122. Shoichiro Ozaki. Chemical Approach to Signal Transduction by Inositol Triphosphate Bioengineering & Biomedical Science. 2014.

123. Shoichiro Ozaki. Regulator of Ca 2+ release and consequent cellular process. *Biochemical and Biophysical Research Communications*. 2013; 441: 286-290.

124. Shoichiro Ozaki. Stopping NOX, NP elimination promote the CO2 assimilation, decrease CO2 and fit Paris agreement, increase food, enrich country. *RIKURYO SCIENCE*. 2003; 53: 71-73.

125. Shoichiro Ozaki. Studies on Inositol. *RIKURYOU SCIENCE*. 2003; 53: 71-73.

126. Shoichiro Ozaki. Regulation of Calcium release in cell. *RIKURYO SCIENCE*. 2004; 54: 124-128.

127. Shoichiro Ozaki. Stopping NOX, NP elimination promote the CO2 assimilation, decrease CO2 and fit Paris agreement, increase food, enrich country. *RIKURYO SCIENCE*. 2003; 53: 71-73.

128. Shoichiro Ozaki. Stop the NOX, NP elimination and Promote the CO2 assimilation, decrease CO2 and fit Paris agreement, increase food, enrich country. *Studies on Inositol* *RIKURYO SCIENCE*. 2005; 53: 71-73.

129. Shoichiro Ozaki. Synthesis of compound having ability to control the Calcium release in cell *RIKIRYOU SCIENCE*. 2006; 54: 124-128.

130. Shoichiro Ozaki. Regulation of Calcium release in cell *RIKURYO SCIENCE*. 2006; 54: 89-102.

131. Shoichiro Ozaki. Three gift i from Yamaoka Nozomu organic chemistry. Discovery of new anti-aging agent. 1-hexyl carbamoyl 5-fluoro uracil. *RIKURYO SCIENCE*. 2007; 55: 27-32.

132. Shoichiro Ozaki. Regulation of Calcium release in cell *RIKURYO SCIENCE*. 2007; 56: 89-102.

133. Shoichiro Ozaki. Method for anti-aging and long life. *RIKURYO SCIENCE*. 2007; 59: 10-11.

134. Shoichiro Ozaki. High molecular weight compounds and Teiji Tsuruta. *RIKURYO SCIENCE*. 2007; 59: 20-30.

135. Shoichiro Ozaki. High molecular compounds. *RIKURYO SCIENCE*. 2007; 59: 20-22.

136. Shoichiro Ozaki. Chemical Arcaibus *RIKURYO SCIENCE*. 2008; 56: 89-103.

137. Shoichiro Ozaki. Meeting at Tokyo Branch Meeting. *RIKURYO SCIENCE*. 2008; 56: 137-142.

138. Shoichiro Ozaki. Signal transduction of biology. Discovery of cell process regulator *RIKURYO SCIENCE*. 2008; 57: 105-110.

139. Shoichiro Ozaki. Signal transduction of biology. Discovery of cell process regulator *RIKURYO SCIENCE*. 2008; 57: 157-158.

140. Shoichiro Ozaki. Report at Tokyo Branch Meeting *RIKURYO SCIENCE*. 2008; 56: 27-32.

141. Shoichiro Ozaki. Discovery of regulator of Alzheimer disease. Synthesis of inhibitor of enzyme which crosslink the protein. RIKURYO SCIENCE. 2010; 56: 97-9.

142. Shoichiro Ozaki. Signal transduction of biology. Discovery of cell process regulator RIKURYO SCIENCE. 2015; 57: 105-110.

143. Shoichiro Ozaki. Synthesis of Sulpho disacaride sulpho-glucuronosyl-glucopyranoside 9205 World journal of pharmacy and pharmaceutical Science. 2015; 158 -175.

144. Shoichiro Ozaki. Signal transaction of Biology. Discovery of Cell process regulators. 2015.

145. Shoichiro Ozaki. Regulation of Ca 2+ release and consequent cellular process RIKURYO SCIENCE. 2015; 57: 157-158.

146. Shoichiro Ozaki. Studies on Inositol RIKURYO SCIENCE. 2017; 60: 14-15

147. Shoichiro Ozaki. Studies on Inositol RIKURYO SCIENCE. 2019; 62: 29.

148. Shoichiro Ozaki Climate Change and Global Warming 2018 RIKURYO SCIENCE. 2017; 60.

149. Shoichiro Ozaki. Why global warming is progressing. Progress of CO2 assimilation is best method to stop global warming. RIKURYO SCIENCE. 2019; 62: 16-17.

150. Shoichiro Ozaki. Studies on Inositol RIKURYO SCIENCE. 2019; 63: 24-29.

151. Shoichiro Ozaki. Stop NOX, NP elimination and Promote the CO2 assimilation, decrease CO2 and fit Paris agreement „increase food, enrich country. RIKURYO SCIENCE. 2020; 63: 24-29

152. Shoichiro Ozaki. Rakkoyo. Raising two crops a year. RIKURYO SCIENCE. 2020; 63: 24-29.

153. Shoichiro Ozaki. Stop the NOX, NP elimination and Promote the CO2 assimilation, decrease CO2 and fit Paris agreement „increase food, enrich country. RIKURYO SCIENCE. 2021; 64: 81-91.

154. Shoichiro Ozaki. Stop the NOX, NP elimination and Promote the CO2 assimilation, decrease CO2 and fit Paris agreement, increase food, enrich country. RIKURYO SCIENCE. 2022; 65: 36-46.

155. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping of NOx, NP elimination are easy method to stop global warming and to growth International Journal of Science and Research Archive. 2023; 08(02): 295-304

156. Shoichiro Ozaki. Environmental policy inhibit CO2 assimilation, inhibit the production of agriculture and infuse production decrease country heath warming up global warming RIKURYO SCIENCE. 2025; 66: 35-43.

157. Shoichiro Ozaki. Why the each was warmed up RIKURYO SCIENCE. 2025; 68: 81-87.

158. Shoichiro Ozaki. Where water is clean, no fish can live, country decline RIKURYO SCIENCE. 2019.

159. Shoichiro Ozaki. Recycle of nitrogen and phosphorous for the increase of food production. New Food Industry. 1993; 35: 10 33-39.

160. Shoichiro Ozaki. Methods to protect global warming. Adv Tech Biol Med. 2016; 4: 181

161. Shoichiro Ozaki. Methods to protect global warming, Food production increase way. New Food Industry. 2016; 58: 47-52.

162. Shoichiro Ozaki. Global warming can be protected by promotion of CO2 assimilation using NOx. Journal of Climatology & Weather Forecasting. 2016; 4: 1000171.

163. Shoichiro Ozaki. Global warming can be protected by promotion of plankton CO2 assimilation. Journal of Marine Science: Research & Development. 2016; 6: 213.

164. Shoichiro Ozaki Method to reactivate fish industry. New Food Industry. 2017; 59: 61-70.

165. Shoichiro Ozaki. NOx is Best Compound to Reduce CO2. Eur J Exp Biol. 2017; 7: 12.

166. Shoichiro Ozaki. Protection of global warming and burn out of fossil fuel by promotion of CO2 assimilation. J of Marine Biology & Oceanography. 2017; 6: 2.

167. Shoichiro Ozaki. Promotion of CO2 assimilation supposed by NOx is best way to protect global warming and food production. Artiv of Pet-Envirn Biotechnol. 2017; 02: 110.

168. Shoichiro Ozaki. Promotion of CO2 assimilation supported by NOx is best way to protect global warming. J. Marine Biol Aquacult. 2017.

169. Shoichiro Ozaki. Stopping of NOx elimination is easy way to reduce CO2 and protect global warming. J. Environ Sci Public Health. 2017; 1(1): 24-34.

170. Shoichiro Ozaki. Stopping of NOx elimination is clever way to reduce CO2 and to increase fish production. J. of Cell Biology & Immunology. 2017; 102.

171. Shoichiro Ozaki. Effective uses of NOx and drainage are clever way to protect global warming and to increase fish production. Oceanography & Fisheries. 2017; 4(4).

172. Shoichiro Ozaki. NOx Elimination and Drainage NP Elimination should be stopped for the production of fish and for the protection of global warming. J. of Fisheries and Aquaculture Development. 2017; 125.

173. Shoichiro Ozaki. Let's enjoy civilized life using limited amount of fossil fuel Journal of Aquaculture & Marine Biology. 2017; 6(3): 06 00158.

174. Shoichiro Ozaki. Method to fit Paris agreement for protection of global warming. International Journal of Waste Resources. 2017; 318.

175. Shoichiro Ozaki. Method to protect global warming and to produce much fish by promotion of plankton growth. New Food Industry. 2018; 60: 88-94.

176. Ozaki Shoichiro. Method to protect global warming by promotion of plankton CO2 assimilation. Rikyou Science. 2018.

177. Shoichiro Ozaki. Effect of NOx elimination on electricity price, fish production, GDP and protection of global warming. International J of Waste Resources 2018.

178. Shoichiro Ozaki. How to fix carbon dioxide same amount as emission for the protection of global warming. Research & Development in Material Science. 2018.

179. Shoichiro Ozaki. Stop of NOx elimination and stop of wast water purification are easy methods to protect global warming. J of Immunology and Information Diseases Therapy. 2018.

180. Shoichiro Ozaki. Climate can be regulated by effective use of

NOx and wastewater NP. 2018 Biomedical Research and Reviews. 2018.

181. Shoichiro Ozaki. Promotion of Plankton CO2 assimilation by effective use of NOx and NP is best method to produce much fish and protect global warming. J of Marine Science Research and Oceanography. 2018.

182. Shoichiro Ozaki. Promotion of plankton CO2 assimilation by NOx is best way to protect global warming and to get best climate. International J of Earth and environmental Science. 2018; 3: 160.

183. Shoichiro Ozaki. Promotion of plant growth by NOx is best method to reduce CO2 and to protect global warming. Current Trends in Oceanography and Marine Science. 2018; 01: 1-4.

184. Shoichiro Ozaki. Fish is best food to get anti-aging and long life. NOx elimination should be stopped to produce much fish and to protect global warming Jacobs Journal of physiology. 2018; 4: 017.

185. Shoichiro Ozaki. Fish is Best Food to Get Anti-Aging and Long Life. J of Aging and Neuropsychology. 2018.

186. Shoichiro Ozaki. NOx and NP in waste water fix CO2 and control global warming and climate. International J of Biochemistry and Physiology. 2018; 3(4).

187. Shoichiro Ozaki. The effect of increase of NOx and CO2 on grain and fish production, protection of global warming and climate. International Journal of Earth Science and Geology. 2019; 1(1): 6-10.

188. Shoichiro Ozaki. Complete use of NOx and NP is essential for the increased production of food and protection of global warming. Inter J Innovative Studies in Aquatic Biology and Fisheries. 2019; 3(1): 1-6.

189. Shoichiro Ozaki. Why global warming is progressing. Promotion of CO2 assimilation is best method to protect global warming. RIKURYOU SCIENCE. 2019; 62: 16-18.

190. Shoichiro Ozaki. Complete use of NOx and NP is essential for the increased production of food and protection of global warming. Inter. J Innovative Studies in Aquatic Biology and Fisheries. 2019; 3(1): 11-15

191. Shoichiro Ozaki. Increase of CO2 and NOx promote CO2 assimilation, CO2 fix and food production. Advances in Bioengineering & Biomedical Science Research. 2019; 1-6.

192. Shoichiro Ozaki. Promotion of CO2 assimilation by effective use of NOx and NP is best method to produce much fish and protect global warming. EC Agriculture. 2019; 492-497.

193. Shoichiro Ozaki. Why fish production of Japan decreased. Why global warming is progressing. New food Industry. 2019; 787-793.

194. Shoichiro Ozaki. In pure water no fish can live. Water purification promote global warming, decline of countries. Rikuryou Science. 2020; 63: 24-29.

195. Shoichiro Ozaki. NOx elimination and NP elimination are promoting global warming. EC Agriculture. 2020; 6: 1 1- 8.

196. Shoichiro Ozaki. Purification of water and air is promoting global warming and country decline. Journal of Marine Science and Oceanography. 2020; 1-4.

197. Shoichiro Ozaki Relation of London Dumping Convention and Global Warming. If Developed Countries stop NP and NOx Elimination, CO2 Assimilation Increase and Global Warming Will Stop. International J of Pollution Research. 2020; 3: 115-119.

198. Shoichiro Ozaki. Global warming will stop, if developed countries stop NOx and NP elimination. J. of Environmental Sci. Current Research. 2020; 3: 022.

199. Shoichiro Ozaki. Stopping of NOx, NP Elimination at developed countries is easy method to protect global warming. J Bacteriology and Myology. 2020; 7(4): 1137.

200. Shoichiro Ozaki. In pure water no fish can alive. Water purification promote global warming and decline region and countries. New Food Industry. 2020; 62: (8): 615-620.

201. Shoichiro Ozaki. Promotion of recycle of carbon, nitrogen and phosphorous is essential for protection of global warming and increase of national wealth. American J of humanities and Social Science. 2020; 01:13.

202. Shoichiro Ozaki. Stopping of NOx and NP elimination at developed countries is essential for the promotion of food production and protection of global warming. J of Soil Science and Plant Physiology. 2020; 2(2): 1-10.

203. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping NOx, NP elimination is best method to produce much food and to protect global warming. American J of Engineering, Science and Technology. 2020; 1-15.

204. Shoichiro Ozaki. Stopping of NOx, NP elimination is easy method to protect global warming. J of Research in Environmental and Earth Science. 2020; 12-21.

205. Shoichiro Ozaki. Method to protect global warming to fit Paris agreement and to enrich the countries. Rikuryou Science. 2021; 64: 32-38.

206. Shoichiro Ozaki. Method to protect global warming and to get long life International Journal of Clinical Case Reports. 2020; 8(2): 002-16.

207. Shoichiro Ozaki Aquaculture of plankton and fish by fertilizer is best way to protect global warming Acta Scientific Biotechnology. 2021; 21: 13-22

208. Shoichiro Ozaki. Promotion of CO2 assimilation by NOx, NP is easy method to protect global warming to get high GDP Open access Research J of Biology and Pharmacy. 2021; 02: (02)063-086.

209. Shoichiro Ozaki. Promotion of CO2 assimilation by sufficient supply of nitrogen and phosphorous is easiest method to fit Paris agreement and to protect global warming and to get national wealth International Journal of Science and Research Archive. 2021; 04(01): 092-105.

210. Shoichiro Ozaki. Stop NOx, NP elimination and promotion of CO2 assimilation will stop Ozaki Increase of CO2 and fit Paris agreement and increase food and enrich country. 2015.

211. Shoichiro Ozaki. Recycle of nitrogen, phosphorous is essential for protection of global warming. World J of Advanced Science and Technology. 2022; 01(01): 015-030.

212. Shoichiro Ozaki. Method to achieve carbon neutral and to fit Paris agreement and to protect global warming. World J of Advanced Science and Technology. 2022; 02(01): 022-031.

213. Shoichiro Ozaki. Sure method to protect global warming and to increase GDP New Food Industry. 2022; 64(12): 799-802.

214. Shoichiro Ozaki. Environmental measures inhibit CO2 assimilation, inhibit food production, make worse economy and promoting global warming GSC Advanced Research and Reviews. 2022; 13(02): 245-257.

215. Shoichiro Ozaki. Environmental measures, inhibit food production, make worse economy and promoting global warming. 2016.

216. Shoichiro Ozaki. Stop NOx NP elimination and promote CO2 assimilation decrease CO2, fit Paris agreement, increase food and enrich country. RI KURYOU SCIENCE. 2023; 65: 36-46.

217. Shoichiro Ozaki. Environmental policy retard CO2 assimilation, retard production of agriculture and fish industry retard country strength and promoting global warming RIKURYOU SCIENCE. 2024; 66: 35-42.

218. Kurahashi Kengo. Acidification of ocean RIKURYOU SCIENCE. 2024; 66: 43.

219. Shoichiro Ozaki, Rakkyo. Rising two crops a year. J of Medical Engineering and Innovation. 2025.

220. Shoichiro Ozaki. Stopping of NOx, NP elimination is easiest method to stop global warming. International Journal of Scientific Research Updates. 2023; 05(01): 067-078.

221. Shoichiro Ozaki. Promotion of CO2 assimilation by stopping of NOx, NP elimination is easy method to stop global warming and to growth International Journal of Science and Research Archives. 2023.

222. Shoichiro Ozaki. A review on the effect of NOx and CO2 increasing in grain International Journal of Earth Science and Geology. 2018; 1(1): 41-45.

223. Shoichiro Ozaki. Environmental policy inhibit the production of agriculture and fish industry, make poor country and make global warming. RIKURYO SCIENCE. 2024; 68: 35-42

224. Kurahashi Kengo. Acidification of sea RIKURYO SCIENCE. 2023; 66: 43.

225. Shoichiro Ozaki Why earth was warmed up RIKURYO SCIENCE. 2025; 68: 81-84.

226. Ryouichi Itou. Water pollution of Seto inland Sea RIKURYOU SCIENCE. 2025; 68: 85-87.

227. Shoichiro Ozaki. Easy method to stop global warming and make carbon neutral were found RIKURYOU SCIENCE. 2025; 68: 92.

228. Shoichiro Ozaki. Ikanago, sardin and plankton increased by stopping of N elimination RIKURYOU SCIENCE. 2025; 68.

229. Shoichiro Osaki. By stopping N elimination, global warming stopped. 2015.

230. Daihachi Ohhamamaru. Makiami fishing ship sank into sea, because too much fish is produced RIKURYOU SCIENCE. 2025; 68: 92-93

231. Shoichiro Osaki. Promotion of CO2 assimilation by stopping of NOx, NP elimination is easy method to stop global" Promotion of CO2 assimilation by stopping of NOx, NP elimination is easy method to stop global. 2025.

232. Shoichiro Ozaki. Promotion of CO2 assimilation by increasing the land to increase crop, fish, glass is important for human being to enjoy million years. IJCMCR. 2025.