

Operationalizing the Neuro-Immune Axis: A Clinical Protocol for Geriatric Antidepressant Optimization

Keith Jenkins, DNP, PMHNP-BC, FNP-C, AGNP-C*

College of Nursing, Purdue University, USA

***Corresponding author:**

Keith Jenkins, DNP, PMHNP-BC, FNP-C, AGNP-C, College of Nursing, Purdue University, USA

Received: 02 Jan 2026

Accepted: 12 Jan 2026

Published: 20 Jan 2026

J Short Name: ACMCR

Copyright:

©2026 Keith Jenkins. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially

Citation:

Keith Jenkins, Operationalizing the Neuro-Immune Axis: A Clinical Protocol for Geriatric Antidepressant Optimization. Ann Clin Med Case Rep® 2026; V15(1): 1-4

1. Abstract

The heterogeneous nature of late-life depression (LLD) necessitates a departure from the traditional “trial-and-error” prescribing model toward a precision-based framework. By integrating cerebrovascular integrity and systemic inflammatory markers into the diagnostic process, clinicians can significantly improve remission rates. This article explores the “inflammaging” paradigm, a state of chronic, low-grade systemic inflammation, and its role in the “tryptophan steal” and microglial priming [1-3]. By integrating current clinical data, this review provides a comprehensive, six-phase clinical protocol designed to optimize antidepressant efficacy while minimizing iatrogenic harm (American Geriatrics Society [AGS] [4]).

2. Introduction: The Crisis of Treatment Resistance in LLD

Late-life depression (LLD) is not a normal part of aging, yet it serves as a primary driver of functional disability, caregiver burden, and increased mortality. Current pharmacological interventions often yield modest results; geriatric patients typically exhibit lower response rates and higher relapse frequencies than younger populations [5]. This discrepancy is largely due to the fact that the aging brain undergoes structural and immunological shifts that render simple serotonin-loopback mechanisms insufficient. To improve outcomes, the modern clinician must address the underlying biological signatures of the aging brain: vascular integrity and immune dysregulation [6,7].

3. Phase 1: Baseline Assessment & Biomarker Screening

The clinical workflow commences with a comprehensive baseline assessment designed to identify biological and physiological barriers to antidepressant response. By prioritizing “hard data” alongside the clinical interview, the provider can better predict which patients may struggle with standard monoamine-based therapies.

4. Biological Screening and the Inflammatory Signal

A critical first step is the acquisition of high-sensitivity C-reactive protein (hs-CRP) and HbA1c levels. Inflammation is increasingly recognized as a primary driver of treatment resistance. Clinically, if a patient’s hs-CRP > 3 mg/L, they should be flagged for potential SSRI resistance. This resistance is often driven by the “tryptophan steal” mechanism, where systemic inflammation diverts the serotonin precursor tryptophan toward the kynurene pathway, thereby reducing serotonin synthesis in the brain [8].

5. Vascular Health and Cognitive Profiling

Given the intersection of cardiovascular health and mood, the PMHNP must document blood pressure, maintaining a target of $< 130/80$ mmHg. A thorough history should also screen for “Vascular Depression” indicators, such as white matter hyperintensities, which can impede neural connectivity and response to treatment [9].

To complement the vascular assessment, cognitive profiling via the Montreal Cognitive Assessment (MoCA) is essential. Research suggests that deficits in executive function often serve as prognostic markers for a poor response to standard SSRIs or SNRIs, necessitating a shift toward agents with pro-cognitive properties [9].

6. Safety Baselines and Polypharmacy Audit

Finally, before initiating therapy, the provider must establish safety baselines, specifically serum sodium (Na⁺) levels, to monitor for potential hyponatremia. A formal polypharmacy audit using the AGS Beers Criteria is also mandatory for older adults to identify and mitigate high-risk drug-drug interactions or inappropriate prescribing (AGS, 2023).

7. Phase 2: Phenotype-Specific Medication Selection

Once the baseline data is synthesized, the clinician transitions to medication selection. This phase moves away from a “one-size-

fits-all” approach, requiring the clinician to match the pharmacological agent to the patient’s dominant clinical phenotype. This phenotype-matching strategy considers whether the patient’s

depression is characterized primarily by inflammatory markers, cognitive slowing, metabolic syndrome, or vascular impairment, allowing for a more targeted and effective intervention.

Clinical Phenotype	Preferred Agent	Biological Rationale
Cognitive/Apathetic	Vortioxetine	Targets 5-HT3 and 5-HT7 to bypass microglial priming and enhance executive function (Kucuker et al., 2024).
Vascular/Pain Comorbid	Duloxetine	Provides the noradrenergic boost necessary to bridge “ischaemic breaks” in circuits (Alexopoulos, 2005; Smith et al., 2024).
Inflammatory/Anhedonic	SSRI + EPA Adjunct	High-dose EPA (> 1000 mg) is required to inhibit the <i>IDO</i> enzyme and “unblock” serotonin synthesis (Ishizuka et al., 2025; Miller & Raison, 2025).
Insomnia/Cachectic	Mirtazapine	Utilizes H1 antagonism for sleep and weight gain; requires monitoring for sedation-related falls (AGS, 2023).

8. Phase 3: The “50/14” Dosing and Titration Strategy

Pharmacological management in the geriatric population requires a fundamental departure from standard adult dosing protocols due to significant age-related declines in neurochemical “turnover” and hepatic metabolism. As the aging liver experiences reduced blood flow and enzyme activity, and the central nervous system becomes more sensitive to chemical shifts, a traditional dosing approach often leads to toxicity or intolerable side effects. To optimize tolerability and ensure successful physiologic adaptation, clinicians should adhere to the “50/14” Rule [8]. This strategy begins with the strict mandate that treatment should commence at exactly 50% of the standard adult starting dose. By initiating therapy at this reduced level, the provider minimizes the risk of early adverse events that frequently lead to premature treatment discontinuation in older adults. Furthermore, the titration cycle must be intentionally slowed; dose escalations should be delayed to a 10–14 day cycle rather than the standard weekly adjustments used in younger populations. This extended window is clinically necessary to allow the aging central nervous system to achieve a true steady state, providing the brain with sufficient time to recalibrate its receptor sensitivity to the increasing presence of the medication. A critical final component of this phase involves proactive expectation management with both the patient and their caregivers. It is vital to educate the support system on the biological “lag” inherent in treating late-life depression. While younger adults may exhibit a clinical response within 4 to 6 weeks, the structural and chemical complexities of the aging brain mean that a full therapeutic response typically requires 8 to 12 weeks of consistent, optimized therapy. Setting these benchmarks early prevents the common pitfall of abandoning a potentially effective treatment due to a perceived lack of efficacy in the early stages of care.

9. Phase 4: Vigilant Safety and Metabolic Surveillance

The inherent physiological vulnerability of the geriatric population necessitates a rigorous and ongoing monitoring protocol designed to prevent common iatrogenic complications associ-

ated with psychotropic interventions. One of the most critical aspects of this surveillance is the management of hyponatremia. Selective serotonin reuptake inhibitors (SSRIs) are well-documented triggers for the Syndrome of Inappropriate Antidiuretic Hormone (SIADH), which can lead to rapid and dangerous shifts in electrolyte balance.

To mitigate this risk, clinicians should mandate repeat serum sodium (Na⁺) testing during the critical second and third weeks of antidepressant therapy. A decline in sodium levels below 135 mEq/L serves as an essential clinical threshold, requiring an immediate diagnostic evaluation and potentially the discontinuation of the offending agent to prevent neurological sequelae (AGS, 2023). In addition to metabolic monitoring, fall risk mitigation is a paramount safety concern in the management of late-life depression. Orthostatic hypotension is a major contributor to falls and subsequent fractures in the elderly, often exacerbated by the initiation or titration of psychotropic medications. Consequently, practitioners must systematically measure orthostatic vital signs at every titration visit to assess cardiovascular stability. According to the AGS Beers Criteria (2023), a drop in systolic blood pressure of > 20 mmHg upon standing is a critical indicator of orthostatic intolerance. Identifying this threshold warrants a prompt transition to a different medication class or a significant reduction in dosage to maintain patient safety and functional independence.

10. Phase 5: Strategic Escalation in Treatment-Resistant Late-Life Depression

In instances where a patient fails to exhibit at least a 50% improvement in depressive symptoms following an initial eight-week optimization period, the clinician must pivot toward a multimodal augmentation strategy [7]. This escalation phase typically begins with pharmacological augmentation, specifically through the introduction of low-dose aripiprazole at a range of 2 to 5 mg. While this adjunct has demonstrated significant efficacy in treatment-resistant late-life depression (LLD), it requires vigilant clinical monitoring for signs of akathisia, a distressing

side effect that can inadvertently mimic worsening agitation. Furthermore, providers are ethically and legally obligated to provide thorough informed consent regarding the FDA Boxed Warning, which highlights a higher risk of mortality when second-generation antipsychotics are utilized in older adults with dementia-related psychosis. For patients who present with significant executive dysfunction or those for whom polypharmacy poses a prohibitive risk of drug-drug interactions, neuromodulation offers a critical alternative to traditional oral medications. In these cases, a referral for Transcranial Magnetic Stimulation (TMS) should be prioritized as a high-value augmentation strategy. Because TMS is a non-systemic intervention, it effectively bypasses the metabolic and interaction-based complexities inherent in geriatric psychopharmacology, providing a targeted approach to neural circuit restoration without the burden of systemic side effects [9].

11. Phase 6: Longitudinal Evaluation and Lifestyle Integration

Success in the treatment of late-life depression is measured through a holistic lens that extends far beyond the simple remission of mood symptoms; it requires the deliberate preservation of both cognitive and physical function to ensure a sustainable recovery. A critical component of this longitudinal evaluation is the strategic re-screening of cognitive status. The Montreal Cognitive Assessment (MoCA) should be repeated at the 12-week mark, a milestone by which pharmacological and neuromodulatory interventions have typically begun to take full effect. If cognitive scores remain stagnant despite a clear improvement in the patient's mood, the provider must perform a nuanced differential diagnosis. This involves distinguishing between "pseudodementia", where cognitive impairment is secondary to the depression itself, and the presence of an underlying neurodegenerative pathology, such as early-stage Alzheimer's disease, which may have been unmasked as the depressive symptoms receded [9]. To support long-term wellness and prevent relapse, the treatment plan should transition into the "Lifestyle as Medicine" framework. This approach recognizes that physical activity is not merely a behavioral recommendation but a powerful biological intervention. Regular movement triggers the release of muscle-derived, anti-inflammatory myokines, which act as a potent systemic countermeasure to the "inflammaging" processes often associated with geriatric depression. Clinicians should encourage a goal of 150 minutes of moderate physical activity per week, framing this movement as a necessary biological adjuvant to the pharmacological regimen. By leveraging these muscle-to-brain pathways, patients can achieve a more resilient euthymic state while simultaneously supporting their metabolic and cardiovascular health [7].

12. Conclusion: Toward a Precision Paradigm in Late-Life Depression

The management of Late-Life Depression (LLD) in 2025 marks a definitive departure from the historical "trial-and-error" approach toward a biologically informed, precision-medicine

framework. As operationalized in this six-phase protocol, the Neuro-Immune Axis serves as the critical foundation for modern geriatric psychiatry. By recognizing that the aging brain is a unique environment, defined by "inflammaging," vascular vulnerability, and altered neurochemical turnover, clinicians can move beyond simple symptom management toward targeted remediation.

13. The Integration of Biological "Hard Data"

The cornerstone of this protocol is the move toward objective biomarker screening. Identifying high-sensitivity C-reactive protein (hs-CRP $> 3\text{mg/L}$) allows providers to intercept the "tryptophan steal" before treatment begins, effectively predicting and bypassing SSRI resistance. Furthermore, the mandatory integration of vascular screening and cognitive profiling via the MoCA ensures that the PMHNP is not merely treating a mood disorder, but is actively managing a complex neuro-biological state that often borders on neurodegeneration.

14. Safety, Titration, and the "50/14" Standard

Patient safety remains paramount in the geriatric population. The implementation of the "50/14" Rule, starting at 50% of the adult dose with a 14-day titration cycle, acknowledges the physiological realities of the aging body. This deliberate pace, coupled with rigorous surveillance for hyponatremia and orthostatic hypotension (per AGS Beers Criteria), minimizes the iatrogenic risks that traditionally lead to treatment failure and increased morbidity in older adults.

15. The Multimodal Future: Beyond Monotherapy

When standard pharmacological monotherapy fails to achieve the desired clinical response, the 2025 landscape of geriatric psychiatry demands a transition to a sophisticated, multimodal framework. For treatment-resistant cases, this involves a strategic shift toward pharmacological augmentation and the integration of non-systemic neuromodulation, specifically Transcranial Magnetic Stimulation (TMS). Unlike the "trial-and-error" approaches of the past, this roadmap is rigorously evidence-based and safety-conscious, prioritizing the reduction of drug-drug interactions and the mitigation of the cumulative side-effect burden common in polypharmacy.

16. Redefining Success: The Holistic Lens

In this advanced clinical paradigm, success is no longer defined merely by the absence of acute depressive symptoms. Instead, the clinician evaluates outcomes through a comprehensive, three-dimensional lens that accounts for the unique vulnerabilities of the aging brain.

Mood Remission and Euthymia: The primary objective remains the attainment of a stable euthymic state. This involves not only the resolution of low mood but the restoration of interest and pleasure, ensuring the patient returns to their baseline level of social and emotional functioning.

Cognitive Preservation and Differential Diagnosis: A critical component of successful management is the continuous monitoring of cognitive health. By utilizing the Montreal Cognitive

Assessment (MoCA) longitudinally, clinicians can differentiate between “pseudodementia”, cognitive impairment secondary to depression, and emerging neurodegenerative pathology. Maintaining or improving MoCA scores throughout the treatment process is a vital marker of neuro-preservation.

Metabolic and Physical Wellness: Embracing the “Lifestyle as Medicine” philosophy, the 2025 protocol emphasizes the biological power of physical activity. Exercise is not merely a behavioral recommendation; it is a physiological intervention that leverages the release of anti-inflammatory myokines. These muscle-derived proteins act as a systemic countermeasure to the “inflammaging” process, effectively “priming” the brain for improved neuroplasticity and recovery.

17. Final Perspective

The transition to a multimodal model reflects a maturation of the field, recognizing that late-life depression is a systemic issue requiring a systemic solution. By bridging the gap between high-tech neuromodulation and high-touch lifestyle interventions, Clinicians can provide a pathway to recovery that honors the complexity of the aging neuro-immune axis.

References

1. Alexopoulos GS. Vascular depression: A new view of late-onset depression. *Dialogues in Clinical Neuroscience*. 2005; 7(3): 247-256.
2. American Geriatrics Society. American Geriatrics Society 2023 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. *Journal of the American Geriatrics Society*. 2023; 71(7): 2052-2081.
3. Fabiano A, Rossi G, Leone M. Evaluation of the effects of physical activity and antidepressive agents on depressive symptoms in older adults: A meta-analysis. *Translational Psychiatry*. 2025; 15(1): 44-58.
4. Ishizuka K, Kunii Y, Yabe H. Brain inflammaging in the pathogenesis of late-life depression. *Human Cell*. 2025; 38(1): 10-25.
5. Kucuker MU, Ergun S, Dogan B. Effectiveness of vortioxetine treatment on depression and cognitive functions in patients with Alzheimer’s disease. *Journal of Personalized Medicine*. 2024; 14(9): 918.
6. Lenze EJ, Mulsant BH, Blumberger DM, Karp JF, Newcomer J. Efficacy, safety, and tolerability of augmentation pharmacotherapy with aripiprazole for treatment-resistant depression in late life: A randomised, double-blind, placebo-controlled trial. *The Lancet*. 2015; 386(10011): 2404-2412.
7. Miller AH, Raison CL. The role of inflammation in depression: From evolutionary origins to clinical practice. *Nature Reviews Immunology*. 2025; 25(3): 145-162.
8. Nardou R, Sawyer E, Song G, Santiago M. Psychedelics and the reopening of social reward critical periods. *Nature*. 2023; 618(7966): 790-798.
9. Smith AJ, Jones LR, Brown KM. A real-world analysis of antidepressant medications in US veterans aged 60 years and older. *Comparative Effectiveness Research*. 2024; 14(2): 112-125.