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1. Abstract
Obesity is defined as the early deposition of adipose tissue caused 
by a consistent caloric intake that exceeds the individual’s caloric 
needs. As a worldwide issue, the rising incidence of obesity is a 
major source of concern—not because of sickness, but because of 
excess. Obesity is linked to a number of ailments, the most serious 
of which might be type 2 diabetes, and the fundamental reason for 
this link is obesity’s proclivity to develop insulin resistance. The 
GSE69039 microarray profile was taken from the Gene Expression 
Omnibus database, included 4 normal-weight samples, 7 slightly 
obese samples, and 7 moderately obese samples. To characterise 
differentially expressed genes (DEGs), the R Limma package was 
utilised. For DEGs, gene ontology and enrichment analyses were 
performed; moreover, the relevance of the mTOR gene in numer-
ous enriched pathways was revealed. The protein-protein interac-
tion networks were generated for DEGs. In addition, a crosstalk 
network for the mTOR-associated pathways was developed. 193 
DEGs have been reported in total. The roles of DEGs have been 
greatly enriched in the biosynthesis process and the cellular nitro-
gen compound metabolic process. The cross-talk network shows 
the major involvement of several signalling pathways and com-
mon pathways of cancer in insulin resistance-mediated obesity. In 
comparison, the cross-talk network offers foundations that target 

several pathways together more efficiently than targeting one path-
way on its own.

2. Introduction
Obesity is the premature deposition of adipose tissue that results 
from a constant caloric intake that exceeds the individual’s caloric 
requirements [1]. In humans, the expansion of adipose deposits 
results in a depot-dependent fashion from increased numbers of 
individual adipocytes (hyperplasia) and adipocyte hypertrophy 
[2]. Importantly, the size and expandability of different adipose 
tissue deposits in humans vary widely at individual levels [3-5]. 
This factor is critically important in understanding the correlation 
between obesity and insulin resistance since deposit expansion is 
associated with increased risk, while expansion of other substanc-
es is associated with decreased risk of obesity [6-9]. The growing 
incidence of obesity is a major global issue, not one of illness but 
one of excess. In the U.S., only around one-third of adults are es-
timated to be of “average” weight [10], and similar patterns are 
found worldwide [10, 12]. Obesity is linked to several conditions, 
the most devastating of which may be type 2 diabetes. 171 million 
people were projected to have diabetes at the beginning of this 
century worldwide, and this is predicted to rise to 366 million by 
2030. Adipose tissue produces elevated quantities of non-esterified 
fatty acids, glycerol, hormones, pro-inflammatory cytokines, and 
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other factors that lead to the production of insulin resistance in 
obese people [11]. For decades, the correlation between obesity 
and type 2 diabetes has been known, and the main reason for this 
relationship is obesity’s capability to develop insulin resistance. 
Insulin resistance is a central feature of type 2 diabetes  etiology 
and is often correlated with a broad range of other pathophysi-
ological features, including obesity, hyperlipidemia, atheroscle-
rosis, and polycystic ovary disorders [12]. Biliopancreatic diver-
sion prompts normalisation of insulin sensitivity in diabetic obese 
patients, which lasts up to two years [13]. Insulin resistance is a 
common phenomenon in obesity [14], as demonstrated by low 
rates of whole-body glucose consumption during clamping [15]. 
It has been shown that weight loss improves the insulin-mediated 
storage of glucose by improving both the oxidation and glucose 
storage in the skeletal muscle [16]. Insulin lowers the blood glu-
cose level by promoting the release of glucose into insulin-sensi-
tive tissues such as skeletal muscle, fat, the abdominal area, and 
the heart. Insulin frequently controls the development of glucose 
in the liver, kidney, blood, and small intestine. Insulin resistance 
happens as the insulin-tolerant tissue deficit responds to insulin 
[17]. Insulin resistance has shown several features in the insulin 
sensitivity assays: fasting hyperinsulinemia and hyperglycemia, 
elevated glycosylated haemoglobin (HbA1c), postprandial hyper-
glycemia, hyperlipidemia, reduced glucose tolerance, impaired 
insulin tolerance, decreased rate of glucose infusion, increased de-
velopment of hepatic glucose, lack of first-step insulin secretion, 
hypoadiponectinemia, and elevated rates of inflammatory plasma 
markers [18]. In obesity, retinol-binding protein-4 (RBP4) pro-
motes insulin tolerance by decreasing phosphatidylinositol-3-OH 
kinase (PI3 K) signalling in the muscle and increasing production 
of the phosphoenolpyruvate carboxykinase gluconeogenic enzyme 
in the liver via a retinol-dependent mechanism [19]. By compari-
son, adiponectin functions as an insulin sensitizer, inducing fatty 
acid oxidation in an AMP-activated protein kinase (AMPK) and 
receptor-dependent peroxisome proliferator (PPAR-) [20]. Fur-
thermore, decreased tumour necrosis factor-(TNF-), interleukin-6 
(IL-6), monocyte chemoattractant protein-1 (MCP-1), several 
macrophage products, and other adipose tissue-populating cells 
also play a role in insulin resistance development [20]. Similarly, 
the pathways of the c-Jun amino terminal kinase (JNK) and IB ki-
nase (IKK)/nuclear factorB (NFB) also result in the up-regulation 
of possible inflammatory mediators that can contribute to insulin 
resistance. Pathways involving suppression of cytokine signalling 
(SOCS) proteins and inducible nitric oxide synthase (iNOS) may 
also prompt insulin resistance caused by cytokines. [21, 22]. The 
activation of the mammalian rapamycin complex (mTORC) plays 
a crucial function in insulin tolerance, and thus, insulin does not 
inhibit gluconeogenesis. This also promotes the production of fatty 
acids [23]. The stage at which insulin signalling is compromised 
in obesity causes downstream insulin receptor activation, as well 

as other downstream pathways of serine-threonine protein kinase 
Akt2 [24] that may be responsible for the disconnection of glu-
cose and lipid metabolism in the insulin signalling pathway [25]. 
Recently, crosstalk between various signalling pathways has been 
shown to play a crucial role in insulin resistance-mediated obesi-
ty. Therefore, the purpose of this study is to use microarray data 
to identify differentially expressed genes (DEGs) in obesity and 
the generation of crosstalk networks to check the presence of the 
mTOR gene in enriched pathways to confirm its role as a major 
culprit in insulin resistance-mediated obesity. This study enlight-
ens further understanding of the molecular mechanisms of obesity 
caused by insulin resistance. In the meantime, this can also give 
insight into the new therapies.

3. Material and Methods
3.1. Data Collection

The mRNA expression profiles of GSE69039 last updated in NCBI 
by Kyungpook National University, Korea, on Feb 22, 2019, were 
generated by the Illumina HumanHT-12 V4.0 expression bead 
chip and downloaded from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/). There were a total 
of 18 mRNA chips, including 4 normal-weight samples, 7 samples 
of mildly obese subjects, and 7 of moderately obese subjects. The 
raw data files and their probe annotation files were retrieved and 
used for further analysis.

3.2. Data Preprocessing

The probe IDs were translated into gene symbols using GEO2R. 
Probe samples with defective or negative values were excluded 
from the study. The data sets were normalised using the min-max 
normalisation formula (Equation 1). The expression values of all 
probe sets corresponding to a given gene were decreased for each 
sample and summed up to a single value lying in the range of 0-1. 
The data was then preprocessed in R Studio [26], utilising the Pre-
process Core package of the R language.

(a-min)/(max-min) eq.1

a shows the observed values in the data, and min and max repre-
sent the minimum and maximum given values in the data.

3.3. Identification of Differentially Expressed Genes

The Limma package [27] in R language was employed on the pre-
processed data to distinguish DEGs between the normal weight, 
slightly obese, and moderately obese groups. The cutoff condition 
for DEGs was set as the p-value between 0.01 – 0.09, the fold 
shift (F) > 10 to <32 and FDR<0.05. Depending on the Benjamini 
& the Hochberg method [28], the raw p values were adjusted to 
appropriate p values.

3.4. Gene Ontology Analysis of DEGs

Gene Ontology (GO) annotation was conducted to evaluate the 
roles of DEGs between standard normal-weight samples and mild-
ly and moderately obese samples. GO analysis has been frequently 
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used in large-scale gene functional enrichment studies [29]. The 
GO studies for biological processes were conducted using the GO 
Term Mapper [30]. The molecular processes of DEGs were re-
trieved through EnrichNet [31]. 

3.5. Pathways Enrichment Analysis of DEGs

The enriched genes in pathways were found by GenCLiP 2.0, 
which is a web-based text-mining platform for gene clustering 
and molecular network construction [32]. The cutoff criteria for 
GO categories were set as p = 0.05 and a hit = 15. The gene list 
obtained through GenCLiP 2.0 was then submitted to the KEGG 
Pathways database to identify enriched pathways. For this pur-
pose, the p-value was set to 0.05 as the cutoff value. The enriched 
pathways obtained through KEGG were further cross-verified us-
ing a network analyst [33] with a cutoff p-value of 0.01 to 0.09.

3.6. Construction of Protein-Protein Interaction Networks and 
Functional Analysis

PICKLE (Protein Interaction Knowledge Base) 2.0 [34] was used 
to extract human protein-protein interactions (PPIs). It is a data-
base of proteins accessible via the internet. From PICKLE, a total 
of 1564 PPI pairs were retrieved. The PPI network was built using 
the Gephi [35] software. The edges and nodes of the created PPI 
network were so complicated that more analysis was required to 
show the PPI network’s enriched functional modules, which were 
done using Network Analyst [33]. Finally, an analysis of the mod-
ules for GO and pathway enrichment was performed.

3.7. Significance Analysis of the mTOR Gene as a Common 
Attractor among Enriched Pathways

All human pathways were obtained from the KEGG database and 
the Network Analyst tool. The pathways involving mTOR proteins 
were screened as major pathways in insulin resistance-mediated 
obesity. The candidate pathways were retrieved with at least some 
mTOR protein overlap between any given pair of pathways. The 
Pearson correlation coefficient was used to measure gene expres-
sion similarity by weight. Then, the nodes and edges in the net-
works were measured. The following formula [36] was performed 
to assess the statistical significance of functional interactions, and 
a heat map was generated.

S(e)= f (diff (x),corr(x,y),diff (y))== -2 +∑_(i=1)▒log_e⁡(p_i)     
eq. 2

Where diff(x) and diff(y) show the quantitative calculation of gene 
x and gene y differential expressions, corr(xy) shows the associa-
tion frequency between gene x and gene y depending on the rates 
of expression, and f demonstrates a generic form of data integra-
tion taking into consideration various data sets through a range of 
statistical resources.

3.8. Disease Ontology Annotation of mTOR Gene

To identify the direct link between the mTOR gene, obesity, and 
insulin resistance-mediated obesity, the DiseaseGeNet tool was 

used [37]. Additionally, the role of mTOR in several cancer-related 
and other metabolic pathways and diseases was also determined.

4. Results and Discussions
The incidence of obesity is growing at an unprecedented rate across 
the globe. Insulin resistance is a major risk factor for the develop-
ment of type 2 diabetes caused by the target tissue’s inability to 
respond properly to insulin and contributes to obesity [38]. In the 
current study, we used bioinformatics methods to explore the mo-
lecular mechanisms of obesity. The results showed that 250 DEGs, 
including 193 genes with known probe annotations and 57 genes 
without known probe annotation names, were identified after pre-
processing. The zinc finger E-box binding homeobox 2 (ZEB2) 
had the lowest p-value of 0.0264 and had the highest fold changes 
(F = 31.6), and proteolipid protein 1 (PLP1) had the highest p-val-
ue of 0.0894 and the lowest fold changes (F = 11.4), respectively, 
among all the DEGs. Among the 193 genes, 12 identifiers were 
duplicated: SYTL2, DNAJB14, ATXN7L3B, PTPRC, CCR2, 
TMEM185B, VPS13B, SLFN11, DNMT3A, CCR2, ASUN, and 
SNHG15. 1 identifier was found to be ambiguous: TMSB15B; 17 
identifiers were un-annotated: SNHG15, RUNX1-IT1, CCDC149, 
C19orf48, SNORD68, LOC153684, LINC00997, TCP11L2, 
SEP02, TARP, SNORA32, LINC00930, SNORA61, SBDSP1, 
LOC146880, MIR330, SNORA20; and 4 identifiers had non-root 
annotations: ATXN7L3B, RHBDD2, AMMECR1 ZNF330. So a 
total of 161 genes were selected as DEGs and further used for anal-
ysis. The GO terms for biological processes obtained through GO 
Term Mapper showed that the cellular nitrogen compound meta-
bolic process contains the maximum number of genes (71 out of 
163), showing 43.56% of the DEGs, and the secondary metabolic 
process involves only one gene (ZEB2, 0.61% of total DEGs). The 
heat map generated for the DEGs is shown in Figure 1.

The mining of 163 genes was performed to obtain gene clusters 
and their molecular networks using Gene Clip 2.0. The p-value 
was set to 0.05 and hits to 15 as the cutoff criteria for GO cate-
gories. About 19 genes were identified through Gene Clip 2.0 for 
network construction, as shown in Table 1. Enriched pathways 
were obtained from network analysts with p 0.05 for the enriched 
DEGs. The maximum number of DEGs (35 DEGs) was substan-
tially enriched in processes such as the cGMP-PKG signalling 
pathway (p = 3.97e-5). Cyclic AMP responsive element binding 
protein 1 (CREB1), myocyte enhancer factor 2C (MEF2C), sol-
ute carrier family 8 member A1 (sodium/calcium exchanger SL-
C8A1), inhibitor of nuclear factor kappa B kinase subunit beta 
(IKBKB), MAPK14 (mitogen-activated protein kinase 14), C-C 
motif chemokine receptor 2 (CCR2), protein tyrosine phosphatase 
receptor type C (PTPRC), ABL proto-oncogene 1, non-receptor 
tyrosine kinase (ABL1), and MEF2C (MADS-box transcription 
enhancer factor 2C) appeared as highly enriched genes among all 
the pathways. 1. The NOD-like receptor signalling pathway was 
retrieved as at least enriched with a p = 1.01e-10.
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This study focuses on the generation of crosstalk networks to 
check the presence of the mTOR gene in enriched pathways and 
confirm it as a major culprit in insulin resistance-mediated obesity 
[39]. Therefore, its presence in enriched pathways was identified 
using the KEGG pathways mapper. The mTOR gene was found to 
be present in 19 pathways among the 120 enriched pathways; de-
tailed information about enriched pathways containing the mTOR 
gene is shown in Table 2.

However, the mTOR gene is also linked to several genes in other 
enriched pathways in which it is not directly present. About 31 
clustered networks and 7 associated diseases were obtained from 
the KEGG database for the DEGs obtained through Gene Clip 2.0. 
(Tables 3 and 4).

The relationship between DEGs and specific functional modules 
was defined by using PICKLE 2.0 to acquire the DEGs-PPI net-
work. 1564 protein-protein interactions were retrieved; the net-
work was so complex (Figure 2) and difficult to analyze that it was 
divided into several functional modules. Figure 3 shows the PPI 

network of highly enriched DEGs, while Figure 4 shows the tissue 
disease-gene PPI network, respectively.

(Small module networks are given in Supplementary Figures 1-2). 
A statistical method on the pathway level was used to identify the 
significant pathways that were altered in obesity associated with 
insulin resistance as a cause of mTOR gene mutations [40]. The 
analysis of the significance of crosstalk effects in pathways was 
based on the pathways obtained through Network Analyst and 
KEGG. The DisGenet showed the involvement of mTOR in 960 
diseases, among which mTOR is responsible for obesity, having a 
score rate of 0.3 with one SNP, and a score of 0.1 with a single SNP 
was observed in insulin resistance-associated obesity. The molec-
ular crosstalk between host and nominee pathways has shown 
several signalling pathways, pathways of cancer, and transcription 
pathways to be important (Figure 5).

The findings of Figure 5 showed the link between the mTOR gene 
and insulin resistance-mediated obesity and even revealed can-
cer’s commonality.

Table 1: List of genes identified through Gene Clip 2.0 for network construction.

Gene Names KEGG Identifiers Co genes Total 

MAPK14 K19603 7 18496

OGT K09667 4 1098

BCR K08878 3 4027

ABL1 K06619 3 6570

PTPRC K06478 3 9773

CD44 K06256 3 12376

CREB1 K05870 3 7600

IKBKB K07209 2 1416

HNRNPL K13159 2 125

SETD1A K11422 1 296

PSMC3 K03065 1 85

CCR2 K04177 1 2854

BAP1 K08588 1 356

ERC1 K16072 1 64

SLC8A1 K05849 1 1891

DDX17 K13178 1 83

PSMD8 K03031 1 86

ZC3HAV1 K13092 1 65

MEF2C K04454 1 720

http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K19603
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=1432
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K09667
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=8473
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K08878
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=613
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K06619
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=25
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K06478
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=5788
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K06256
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=960
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K05870
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=1385
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K07209
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=3551
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K13159
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=3191
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K11422
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=9739
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K03065
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=5702
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K04177
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=729230
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K08588
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=8314
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K16072
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=23085
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K05849
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=6546
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K13178
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=10521
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K03031
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=5714
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K13092
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=56829
http://ci.smu.edu.cn/GenCLiP2/gene_network.php
https://www.genome.jp/dbget-bin/www_bget?ko:K04454
http://ci.smu.edu.cn/GenCLiP2/hit_network_genes.php?user=anummunirmughal@gmail.com&random=2020-04-17_03-55-02_4815&prefix=analysis_obesity&geneid=4208
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Figure 1: Heat map of DEGs between normal, mildly obese, and moderately obese samples Each row represents the relative levels of expression of a 
single gene across all samples, and each column represents the levels of expression for a single sample. The black colour represents the corresponding 
gene-term association positively reported, and the green colour shows the corresponding gene-term association not reported yet.

Table 2: The Enriched pathways obtained through crosstalk networks and statistical analysis involving the role of activated mTOR gene linked with 
obesity.

Name Hits P Value Adjusted p Value

Pathways in cancer 146/530 5.54E-33 3.52E-31

ErbB signaling pathway 46/85 1.77E-24 5.12E-23

PI3K-Akt signalling pathway 95/354 1.88E-20 3.52E-19

NF-kappa B signalling pathway 44/100 7.28E-19 1.06E-17

Ras signaling pathway 71/232 7.36E-19 1.06E-17

EGFR tyrosine kinase inhibitor resistance 37/79 3.64E-17 3.74E-16

IL-17 signaling pathway 39/93 5.49E-16 4.85E-15

Insulin signalling pathway 45/137 1.39E-13 9.63E-13
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Estrogen signaling pathway 43/138 3.73E-12 2.24E-11

Insulin resistance 37/108 5.17E-12 2.93E-11

Transcriptional misregulation in cancer 51/186 8.44E-12 4.71E-11

MicroRNAs in cancer 67/299 9.99E-11 4.97E-10

VEGF signaling pathway 24/59 5.27E-10 2.46E-09

Jak-STAT signalling pathway 41/162 1.30E-08 5.09E-08

p53 signaling pathway 24/72 5.43E-08 2.03E-07

mTOR signaling pathway 37/153 2.36E-07 8.42E-07

Autophagy - animal 32/128 6.99E-07 2.42E-06

Wnt signaling pathway 36/158 1.60E-06 5.07E-06

AMPK signaling pathway 26/120 1.09E-04 2.97E-04

Table 3: The list of clustered networks formed by DEGs

KEGG Identifier Gene Involved Pathway Name

06210  ABL1  ERK signalling 

06214  ABL1, IKBKB PI3K signaling 

06211  MAPK14 MAPK signaling 

06219  ABL1 JAK-STAT signalling

06223  IKBKB TNF signaling 

06240  MEF2C Transcription 

06263  IKBKB, MAPK14, CREB1 Hepatocellular carcinoma  

06276  ABL1 Chronic myeloid leukemia 

06461  CREB1 Huntington disease 

06310  CREB1 CRH-ACTH-cortisol signaling 

06360  CREB1 Cushing syndrome 

06316  CREB1 Angiotensin-adosterone signaling 

06322  CREB1 TRH-TSH-TH signaling 

06324  CREB1 GHRH-GH-IGF signalling 

06110  MAPK14 MAPK signalling (viruses) 

06114  IKBKB PI3K signaling (viruses) 

06121  IKBKB, MAPK14 TLR signalling (viruses and bacteria) 

06139  IKBKB NLR signalling (viruses and bacteria)

06133  IKBKB RIG-I signaling (viruses)

06123  IKBKB, MAPK14, CREB1 TNF signalling (viruses and bacteria) 

06124  IKBKB, MAPK14, CREB1, CCR2 Chemokine signalling (viruses) 

06160  IKBKB Human T-cell leukemia virus 1 (HTLV-1) 

06161  IKBKB, MAPK14, CREB1 Human immunodeficiency virus type 1 (HIV-1) 

06169  IKBKB Measles virus (MV) 

06170  IKBKB Influenza A virus (IAV) 

06162  IKBKB, MAPK14, CREB1 Hepatitis B virus (HBV) 

06163  IKBKB Hepatitis C virus (HCV) 

06168  IKBKB Herpes simplex virus 1 (HSV-1) 

06167  IKBKB, MAPK14, CREB1, CCR2 Human cytomegalovirus (HCMV) 

06164  MAPK14, IKBKB Kaposi sarcoma-associated herpesvirus (KSHV) 

06165  IKBKB Epstein-Barr virus (EBV) 

https://www.genome.jp/kegg-bin/show_network?id=06210&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06214&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06211&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06219&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06223&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06240&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06263&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06276&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06461&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06310&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06360&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06316&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06322&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06324&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06110&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06114&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06121&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06139&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06133&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06123&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06124&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06160&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06161&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06169&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06170&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06162&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06163&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06168&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06167&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06164&queryfile=searh_network.62321.args&align=1
https://www.genome.jp/kegg-bin/show_network?id=06165&queryfile=searh_network.62321.args&align=1
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Table 4: The list of diseases associated with DEGs used for cluster networks

KEGG Identifier Disease Gene Name

H00001  B-cell acute lymphoblastic leukemia  ABL1

H00004  Chronic myeloid leukemia  ABL1

H01360  Allergic rhinitis  CCR2

H00091  T-B+Severe combined immunodeficiency PTPRC

H00093  Combined immunodeficiency  IKKB

H01223  Mental retardation-stereotypic movements-epilepsy and/or cerebral malformations  MEF2C

H00773  Autosomal dominant mental retardation  MEF2C

Figure 2: Protein-protein interaction (PPI) network of DEGs The red nodes represent the modules of the PPI network. Purple nodes represent up-reg-
ulated DEGs, and pink nodes show down-regulated DEGs outside the module. In the module, there were 1534 nodes and 2713 edges. The density of 
the module was 0.584.

Figure 3: The interaction network of highly enriched genes obtained through the Gene Clip 2.0 server. The weight of the edges is written in green, and 
the most significant DEGs are highlighted by purple boundaries.

https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H00001&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H00004&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H01360&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H00091&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H00093&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H01223&option=-n
https://www.genome.jp/kegg-bin/search_htext?htext=br08402_gene.keg&filedir=/tmp//htext.mapping_80995&query=H00773&option=-n
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Figure 4: The disease gene interaction network of DEGs. Blue squares represent associated diseases of DEGs, and red nodes show DEGs. DEGs for 
which no disease association was observed are shown by a light orange colour.

Figure 5: The Crosstalk network generated for pathways consisting of mTOR Gene as a common culprit of Obesity and Insulin resistance.

5. Conclusion
In conclusion, the identified DEGs, especially ABL, CREB1, PT-
PRC, IKBKB, CCR2, MEF2C, and MAPK14, may be key genes 
for obesity, and these genes, which are linked with metabolic pro-
cesses such as biosynthesis and apoptosis, may be useful markers 
for predicting cancers due to obesity and act as therapeutic targets 
for the treatment of insulin resistance-mediated obesity in obese 

patients. Moreover, several signalling pathways, transcription-re-
lated pathways, and common pathways of cancer were found to 
play important roles in the incidence of obesity due to the activa-
tion of the mTOR gene in the crosstalk network among obesity-re-
lated pathways. Our studies shed new light on the mechanisms and 
treatment of obesity. However, in the future, as described above, 
not only genes but also pathways associated with obesity can be 
evaluated and verified jointly through animal and clinical experi-
ments.
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