The Efficacy and Safety of Convalescent Plasma for COVID-19 Patients: A Meta-Analysis Based on Double-Blinded Parallel-Arm Randomized Placebo-Controlled Trials

Du R1, Zheng S2, Yang W2* and Liao P3*

1Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, China
2Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
3Department of Paediatrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Beijing, China

*Corresponding author: Wenjing Yang,
Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Peiyuan Liao,
Department of Paediatrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University

Received: 16 Feb 2024
Accepted: 25 Mar 2024
Published: 30 Mar 2024
J Short Name: ACMCR

Keywords:
Coronavirus disease 2019 (COVID-19); Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); Convalescent plasma (CP); Outcome; Efficacy; Safety; Adverse events (AEs); Serious AEs; Meta-analysis

1. Abstract

1.1. Background: Convalescent plasma (CP) was demonstrated promising benefit for clinical practice involved in efficacy and safety in previous coronavirus pandemics, however, the efficacy of CP from COVID-19 sufferers are still controversial and unascertained based on current randomized controlled trials (RCTs). The urgent needs for affirmative replies on the efficacy and safety of CP for COVID-19 patients must be developed as soon as possible.

1.2. Objective: To corroborate the efficacy and safety of CP based on high-quality double-blinded, parallel-arm placebo-control randomized clinical trials and provide evidence-based support for clinical application of CP against COVID-19.

1.3. Methods: Such medical electronic databases as Embase, PubMed, and Web of Science were retrieved from inception to March 12, 2022. This meta-analysis synthesizes such dichotomous outcomes as the incidences of 28-day mortality, hospitalization rate, invasive mechanical ventilation, adverse events (AEs) and serious AEs using intention-to-treat (ITT) analysis. Statistical analysis, using Review Manager (RevMan) 5.4.1 software, Mantel-Haenszel (M-H) statistical method and random effects (RE) analysis model, risk ratios (RRs) plus their 95% confidence intervals (CIs) as effect measures, were performed. Two reviewers independently searched, screened, included the eligible clinical trials, extracted data of concern from them and assessed the risks of bias (ROB) of the included articles with the Cochrane ROB tool 1.0 and RevMan 5.4.1 software. The effect measures of RRs plus their 95% CIs in this meta-analysis will be computed as dichotomous outcomes of interest. Statistical heterogeneities, subgroup analysis and sensitivity analysis will be fulfilled to explore the heterogeneities and their causes. We evaluate the quality of evidence and put forward strength of recommendations for clinical practice based on the GRADE approach. This prospective meta-analysis protocol has been registered on PROSPERO.

1.4. Results: 697 references were preliminarily identified from the databases of concern and manual retrievals, and 9 eligible double-blinded, parallel-arm, placebo-control randomized clinical trials with 1898 subjects in the intervention group and 1696 participants in the control group were ultimately included in the meta-analysis. 7, 4, 3, 3 and 3 eligible trials are adjudged as low...
zyme 2 receptors resided in host cell surface and block viral entry -the attachment of the SARS-CoV-2 to angiotensin converting enzyme against the membrane spike protein of SARS-Cov-2 should retarding profiles, intensified neutralizing antibodies from CP targeted may be simultaneously or/and separately touch upon the followings are not comprehended yet, the potential therapeutic mechanisms although the action mechanisms of CP directed against COVID-19 laboratory parameter [3].

2. Introduction Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is one of seven known human-infected coronaviruses, was identified in Hubei province, China in December of 2019 and caused a pleomorphic spectrum of clinical presentations from asymptomatic infection to critical illness, life-threatening status and death. COVID-19 induced by multiple variants currently has dispersed to most parts of the world, triggered a human crisis and globally endangered public health and socioeconomic status. The typical clinical characteristics of COVID-19 include such three domains as fever, dry cough, dyspnea, fatigue, myalgia, anosmia, and ageusia in symptoms and signs 2, ground-glass opacity in posterior and peripheral areas of the bilateral lungs in computed tomography and lymphopenia, elevated inflammatory biomarkers and D-dimers in laboratory parameter [3].

Although the action mechanisms of CP directed against COVID-19 are not comprehended yet, the potential therapeutic mechanisms may be simultaneously or/and separately touch upon the following profiles, intensified neutralizing antibodies from CP targeted against the membrane spike protein of SARS-CoV-2 should retard the attachment of the SARS-CoV-2 to angiotensin converting enzyme 2 receptors resided in host cell surface and block viral entry into the host cell [4], such the immunomodulatory mechanisms as disturbing complement activation, antibody-dependent cytotoxicity and phagocytosis associated with CP infusion may facilitate restricting the more deleterious inflammatory cascade than the virus itself [5], the IgG of anti-A isoagglutinin in lying in subjects with O-type blood would prevent the coupling of SARS-CoV-2 with its receptor and block the virus entry into the targeted cells [6].

CP infusion in previous coronavirus pandemics [7-10], in early observational studies [11, 12], RCTs [13-15] and Meta-Analysis [16, 17] demonstrated promising benefit for clinical outcomes in patients with COVID-19; but the recent RCTs [3, 18] exhibited no favorable and satisfactory clinical efficacies. Up to now, there are still no favorable specific therapy options for COVID-19, some promising and encouraging therapeutic at tempts to treat this disease are still on the road [3]. The CP from sufferers infected by SARS-CoV10 and influenza virus [9] has long been successfully used and shown conclusive efficacious evidence for a few decades. However, the efficacy of CP from COVID-19 sufferers is still controversial and unascertainable based on current clinical trials with different efficacy in term of mortality either favorable efficacy from several studies [11-15] or unfavorable efficacy from the other studies [3, 18].

A hypothesis is that the intravenous infusion of CP with high titers of neutralizing antibodies would benefit improvement in clinical outcomes in COVID-19 patients. The main goals of this meta-analysis are to evaluate the specific efficacy and safety of CP for COVID-19 patients based on randomized, double-blinded, placebo-controlled, parallel-arm clinical trials and provide evidence-based support for clinical practice.

3. Methods This investigator-initiated systematic review and meta-analysis are implemented with a prospective protocol registration on PROSPERO (https://www.crd.york.ac.uk/PROSPERO/#myprospero) and as per the present methods as recommended in AMSTAR 2 [19], the PRISMA statement [20], and Cochrane Collaboration recommendations [21].

4. Inclusion Criteria The qualified papers will satisfy all the following requirements: ① The published original randomized, double-blinded, placebo-controlled, parallel-arm clinical trials involved in the efficacy or safety of the CP therapy; ② all included participants must meet the following requirements: aged 18 years or older, laboratory-confirmed COVID-19, with or without underlying diseases; ③ CP plus local standard care in the intervention group, placebo (normal saline (NS) or non-convalescent plasma) plus local standard care or merely local standard care in the control group; ④ eligible studies at least included one of such outcomes of concern as the incidences of 28-day mortality, hospitalization, invasive mechanical ventilation, AEs and serious AEs.
5. Exclusion Criteria

The papers with one of the following requirements, such as articles on non-RCT, crossover RCT, hyperimmune RCT, trial protocol, single-arm trial, observation trial, case report or cohort trial, review or meta-analysis, position paper, letter, editorial, comment, fingerpost or recommendation, erratum and correction, conference abstract, animal trial, and article unavailable full text, will be discarded.

6. Retrieval, Screening, Data extraction

We comprehensively searched such medical databases as PubMed, Embase and Web of Science using the following search strategy formulations: ((convalescent plasma) AND (((Covid-19) OR (Covid 19)) OR (SARS-CoV-2))) AND (((trial) OR (trials)) AND ((control) OR (controlled))) AND ((randomised) OR (randomized))) to retrieve as accurate and complete studies of concern as possible up to March 12, 2022, abided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. We included all published original double-blinded, parallel-arm, placebo-controlled randomized, clinical trials on the efficacy and safety of CP infusion for COVID-19 patients limited to English. The two authors (LP and LX) must independently complete retrieval based on the above-mentioned search strategy, screening based-on inclusion and exclusion criteria, extracting data of interest, respectively; any divergences in results of retrieval, screening and data extraction must be settled by mutual negotiation.

7. Risk of Bias Assessment

The Cochrane ROB1.0 tool, which includes such 7 domains of bias as (I) selection bias(random sequence generation), (II) selection bias (allocationconcealment), (III) performance bias (blinding for participants and personnel), (IV) detection bias (blinding for outcome assessment), (V) attrition bias (incompleteoutcome data), (VI) reporting bias (selective reporting), and (VII) other bias, will be used to evaluate the ROBs of included articles. Two authors (LP and TY) will independently assess the ROBs of all included eligible articles based on ROB 1.0 tool and draw ROB summary with RevMan 5.4.1 software, respectively. Any divergence will be disposed of by discussion with each other when necessary.

8. Sensitivity Analysis and Subgroup Analysis

Sensitivity analysis performed to both demonstrate robustness of conclusions and seek out the reasons for heterogeneity by successively eliminating one included study. If significant heterogeneity is definite (I² > 75%), possible sources of heterogeneity must be investigated via subgroup analysis or sensitivity analysis based on specific status.

9. Statistical Analysis

Statistical analysis is performed using RevMan Version 5.4.1 software, M-H statistical method and RE analysis model to synthesize the eligible inclusion data and arrive at a total effect measure of RR and 95% CI on every outcomeof concern. The heterogeneity test is quantitatively assessed using I² statistic (significant at P < 0.10). The levels of heterogeneity are defined as high, medium and low levels when I² values were 75–100%, 50–75% and 0–50%, respectively. RE analysis model will be applied if I² is < 75%. Otherwise, the narrative review must be taken into account. The cumulative effects of outcomes of concern are presented via forest plots, which can simultaneously show the effect parameters of RR and its 95% CIs for each included study. Publication bias is rated using visual qualitative funnel plot inspection if enough eligible studies are included.

10. The Quality of Evidence and Recommendation

A recommendation on CP infusion in COVID-19 patients is made based on the guideline of GRADE23 after the quality of evidence is adjudged as high, moderate, low or very low level according to the another guideline24.

11. Role of the Funding Source

There was not any financial support for the design, data retrieval and extraction, data synthesis, interpretation in ultimate results, and writing of original article associated with this meta-analysis. Each author has full access to the data associated with the meta-analysis and finally decides to publish it.

12. Results

The systematic review and meta-analysis on efficacy and safety of CP infusion in COVID-19 patients is registered at PROSPERO with the registration code of CRD42022324324. A total of 697 articles (173 in PubMed, 392 in Embase and 132 in Web of Science) were obtained via retrievalsearching medical electronic databases of concern with the similar search strategy described above. 197 and 54 articles were deleted for duplication in the fields of authors, headline, abstract and publish journal via EndNote or by hand, respectively. Sub-sequentially, the rest of 33 articles, following discarding 413 articles because of contradiction with inclusion criteria or accordance with exclusion criteria by inspecting the title and abstract, are assessed as preliminary eligibility. Finally, 9 articles [2, 14, 15, 18, 25-29], after eliminating 24 articles with such specific removal causes as 21 open-label RCTs, 2 single-blinded RCTs and one prophylactic RCT by reading full-text, were included in this quantitative meta-analysis. All operation procedures follow the flow diagram of search and selection displayed in Figure 1. Of 9 studies included in the quantitative synthesis (meta-analysis), a total of 3594 participants were randomized to the intervention group (n=1898) using CP infusion plus local standard care and the control group (n=1696) using either NS or non-convalescent plasma plus local standard care or merely local standard care.
13. The ROB Assessment for all Included Studies

The ROB assessments were performed using RevMan5.4.1 software and ROB 1.0 tool for the included clinical trials. RevMan5.4.1 software was utilized to create ROB summary in each domain-level evaluation for each inclusion study. Of 9 eligible included studies, 7 studies 2, 15, 18, 25, 26, 28, 29 on mortality, 3 studies 2, 26, 29 on invasive mechanical ventilation, 4 studies 2, 15, 26, 29 on hospitalization rate, 3 studies 15, 25, 26 on AEs and 3 studies 18, 26, 28 on serious AEs were judged as low ROB, and the study with at least one high risk or ≥ 3 unclear risks in all 7 domains were identified as high ROB. The results of overall ROB on all outcomes of concern are high risk presented in Figure 2.1-2.5.

Although the qualitative funnel plot test for publication bias is low power when a meta-analysis includes ten or fewer studies or the more confounding factors amongst inclusion trials, the publication bias test on mortality in this meta-analysis using a visual qualitative funnel plot presents somewhat asymmetry at the bottom of the funnel plot, indicating it is possible that some RCTs with small sample size or negative outcomes were not published showed in Figure 3; the publication bias test using funnel plot on the incidence of hospitalization, invasive mechanical ventilation, AEs and serious AEs in this meta-analysis were discarded owing to too few available studies.

Figure 1: Study flow diagram of search and selection

Figure 2.1: ROB summary on 28-day mortality

Figure 2.2: ROB summary on invasive mechanic ventilation

Figure 2.3: ROB summary on hospitalization rate

Figure 2.4: ROB summary on adverse events

Figure 2.5: ROB summary on serious adverse events
14. General Characteristics and Key Information of the Included Studies

The general characteristics and critical information of a total of 9 eligible studies included in this meta-analysis are presented in Table 1. 9, 5, 4 and 5 studies are included in quantitative synthesis on mortality outcome 2, 14, 15, 18, 25-29 (137 deaths from 1898 participants in the intervention group vs. 139 deaths from 1696 participants in the control group), invasive mechanical ventilation outcome 2, 14, 26, 27, 29 (36 sufferers from 1016 participants in the intervention group vs. 25 from 898 in the control group), AEs outcome 15, 25-27 (254 cases of 1358 participants in the intervention group vs. 175 of 1245 in the control group), and RE analysis model was applied owing to the medium or low levels of heterogeneity amongst included clinical trials. The hospitalization rate outcome including 4 studies 2, 15, 26, 29 (169 hospitalized cases from 1106 participants in the intervention group vs. 130 from 989 in the control group) is dealt with via narrative analysis because of a high level of heterogeneity among inclusion studies.

Table 1: General characteristics and key information of included clinical trials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>mild and moderate</td>
<td>NA</td>
<td>moderate to severe</td>
<td>mild</td>
<td>severe and critical</td>
<td>severe</td>
<td>Mild moderate or severe</td>
<td>moderate to severe</td>
</tr>
<tr>
<td>Age(int)</td>
<td>Median (IQR) 56 (52–62)</td>
<td>mean (SD): 56.3 ± 12.7</td>
<td>mean (SD): 67 (15.8)</td>
<td>Median (IQR): 62.0 (51.0–72.0)</td>
<td>Median (IQR): 60 (48–71)</td>
<td>Median (IQR) 62.5 (53–72.5)</td>
<td>Median (IQR) 42 (31.5–54)</td>
<td>Median (IQR) 54 (46–62)</td>
</tr>
<tr>
<td>Age(con)</td>
<td>Median (IQR) 56 (53–63)</td>
<td>mean (SD): 55.0 ± 13.3</td>
<td>mean (SD): 64 (17.4)</td>
<td>Median (IQR): 64.0 (54.0–74.0)</td>
<td>Median (IQR): 63 (49–72)</td>
<td>Median (IQR) 62 (49–71)</td>
<td>Median (IQR) 44 (33–55)</td>
<td>Median (IQR) 57 (47–64)</td>
</tr>
<tr>
<td>Nitt(int)</td>
<td>188</td>
<td>63</td>
<td>59</td>
<td>80</td>
<td>468</td>
<td>150</td>
<td>228</td>
<td>610</td>
</tr>
<tr>
<td>Nitt(con)</td>
<td>188</td>
<td>95</td>
<td>15</td>
<td>80</td>
<td>473</td>
<td>73</td>
<td>106</td>
<td>615</td>
</tr>
<tr>
<td>Nmitt(int)</td>
<td>188</td>
<td>63</td>
<td>58</td>
<td>76</td>
<td>462</td>
<td>147</td>
<td>228</td>
<td>592</td>
</tr>
<tr>
<td>Nmitt(con)</td>
<td>188</td>
<td>95</td>
<td>14</td>
<td>78</td>
<td>462</td>
<td>72</td>
<td>105</td>
<td>589</td>
</tr>
<tr>
<td>M/F(int)</td>
<td>105/83</td>
<td>42/21</td>
<td>36/23</td>
<td>26/54</td>
<td>284/184</td>
<td>96/54</td>
<td>161/67</td>
<td>269/323(Mitt)</td>
</tr>
<tr>
<td>M/F(con)</td>
<td>98/90</td>
<td>65/30</td>
<td>7-Aug</td>
<td>34/46</td>
<td>272/201</td>
<td>51/22</td>
<td>64/41</td>
<td>237/352(Mitt)</td>
</tr>
<tr>
<td>T-int-symptoms</td>
<td>≤7d</td>
<td>NA</td>
<td>≤3d</td>
<td>Median (IQR): 9 (6–18)</td>
<td>Median (IQR): 7 (4–9)</td>
<td>Median: 9d</td>
<td>Median (IQR): 8 (5–10)</td>
<td>≤8d</td>
</tr>
<tr>
<td>T-con-symptoms</td>
<td>≤7d</td>
<td>NA</td>
<td>≤3d</td>
<td>Median (IQR): 9 (6–15)</td>
<td>Median (IQR): 7 (4–9)</td>
<td>Median: 9d</td>
<td>Median (IQR): 8 (5–10)</td>
<td>≤8d</td>
</tr>
<tr>
<td>Pr-PLB (ml)</td>
<td>NS 250ml or 5 ml/kg</td>
<td>Non-convalescent plasma 5 ml/kg</td>
<td>Standard plasma 480ml</td>
<td>NS 250</td>
<td>NS 250</td>
<td>control plasma 200-250ml</td>
<td>NS500</td>
<td>Standard plasma ≥175</td>
</tr>
<tr>
<td>Pr-CP (ml)</td>
<td>250–300ml or 5 ml/kg</td>
<td>5 ml/kg</td>
<td>480ml</td>
<td>250ml</td>
<td>250ml</td>
<td>CP 200-250ml</td>
<td>Median (IQR) 500 (415-600)</td>
<td>≥175ml</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>2</td>
<td>59</td>
<td>19</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Death toll (int)</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>71</td>
<td>18</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Death toll (con)</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>NA</td>
<td>12</td>
<td>19</td>
<td>NA</td>
</tr>
<tr>
<td>N int (int)</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>4</td>
<td>NA</td>
<td>4</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>N int (con)</td>
<td>22</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>17</td>
</tr>
<tr>
<td>N int (int)</td>
<td>21</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>NA</td>
<td>NA</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>N int (con)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>44</td>
<td>NA</td>
<td>153</td>
<td>34</td>
</tr>
<tr>
<td>N int (int)</td>
<td>NA</td>
<td>0</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>39</td>
<td>54</td>
<td>NA</td>
</tr>
<tr>
<td>N int (con)</td>
<td>NA</td>
<td>0</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>26</td>
<td>19</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: T-assess = Time at assessing outcome; Age (int) = age in intervention group; Age (con) = age in control group; IQR = interquartile range; SD = standard deviation; Niit(int) = the number of intention-to-treat participants in intervention group; Niit(con) = the number of intention-to-treat participants in control group; Nmiit(int) = the number of modified intention-to-treat participants in intervention group; Nmiit(con) = the number of modified intention-to-treat participants in control group; M/F(int) = male/female in intervention group; M/F(con) = male/female in control group; T-int-symptoms = intervention timing after the onset of symptoms in intervention group; T-con-symptoms = intervention timing after the onset of symptoms in control group; Pr-PBO = Prescription of placebo in control group; Pr-CP = Prescription of convalescent plasma in intervention group; NS = normal saline; int = intervention group; con = control group; ml = milliliters; kg = kilogram; N in-venti(int) = the number of cases using invasive mechanical ventilation in intervention group; N in-venti(con) = the number of cases using invasive mechanical ventilation in control group; N int-hosp = the number of hospitalized cases in intervention group; N con-hosp = the number of hospitalized cases in control group; NAE (int) = the number of cases with any adverse events in intervention group; NAE (con) = the number of cases with any adverse events in control group; NSAE (int) = the number of cases with serious adverse events in intervention group; NSAE (con) = the number of cases with serious adverse events in control group; NA = not available.

15. Primary and Secondary Outcomes

Meta-analysis using quantitative synthesis on hospitalization rate is rejected because heterogeneity (I2 = 92%, P < 0.00001) amongst the included trials are significant. Heterogeneity tests on 28-day mortality, invasive mechanical ventilation, AEs and serious AEs amongst the included trials shown in Figure 4.1-4.4 reveal homogeneity. 28-day mortality outcome presented in Figure 4.1 shows a significant statistical difference between the two groups (RR 0.78 [95% CI 0.62–0.97], I2 0%, P = 0.03), which indicates that the CP infusion is effective for COVID-19 patients in reducing the 28-day mortality by approximately 22%. However, the incidences of invasive mechanical ventilation, AE and serious AE are no statistical significance between the intervention group and the control group, which indicate that CP infusion in COVID-19 patients is safe and does not decrease usage of invasive mechanical ventilation for COVID-19 patients.

Figure 4.1: the forest plots of 28-day mortality between the CP and control group.

Figure 4.2: the forest plots of the rate of invasive mechanical ventilation between the CP and control group.
16. Sensitivity Analysis

Sensitivity analyses are performed for all outcomes of interest and their information is presented in Table 2. From sensitivity analyses on hospitalization rate, the striking heterogeneities showed in Table 2 C may indicate more confounders or baseline imbalance amongst inclusion trials and make quantitative synthesis on this outcome be abandoned. After deleting the study by O’Donnell, the combining effect measure on mortality (RR 0.83 [0.66, 1.06], I² 0%, Z-value 1.46, P = 0.14) is different from the total effect measure in advance of deleting the study, hinting that the deleted study may be more efficacious in reducing mortality or exist additional confounders (e.g.: severe or critical illness); this marked impact on the total effect may require more identical clinical trials to check this effect and explore confounders of concern. Sensitivity analyses on invasive mechanical ventilation, any AEs, and serious AEs presented in Table 2B, 2D, 2E show that all statistical results are not altered after deleting any trial, which corroborate that the results are robust accompanying with the low to medium levels of heterogeneity amongst inclusion trials.

Table 2: Sensitivity analysis

<table>
<thead>
<tr>
<th>Deleted article</th>
<th>RR and 95%CI</th>
<th>F(%)</th>
<th>Z-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 28-day mortality and overall effect RR (0.78 [0.62, 0.97], I²=0%, Z=2.22, P=0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemany 2022</td>
<td>0.78 [0.63, 0.98]</td>
<td>0</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>Baldeón 2022</td>
<td>0.77 [0.61, 0.97]</td>
<td>0</td>
<td>2.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Libster 2021</td>
<td>0.78 [0.63, 0.98]</td>
<td>0</td>
<td>2.13</td>
<td>0.03</td>
</tr>
<tr>
<td>Ortigoza 2022</td>
<td>0.72 [0.53, 0.99]</td>
<td>0</td>
<td>2.05</td>
<td>0.04</td>
</tr>
<tr>
<td>O’Donnell 2021</td>
<td>0.83 [0.66, 1.06]</td>
<td>0</td>
<td>1.46</td>
<td>0.14</td>
</tr>
<tr>
<td>Simonovich 2021</td>
<td>0.75 [0.59, 0.96]</td>
<td>0</td>
<td>2.32</td>
<td>0.02</td>
</tr>
<tr>
<td>Sullivan 2021</td>
<td>0.78 [0.63, 0.98]</td>
<td>0</td>
<td>2.13</td>
<td>0.03</td>
</tr>
<tr>
<td>Van den Berg 2022</td>
<td>0.77 [0.61, 0.98]</td>
<td>0</td>
<td>2.16</td>
<td>0.03</td>
</tr>
<tr>
<td>B: Invasive mechanical ventilation and effect RR (0.84[0.50, 1.42], I²=0%, Z=0.65, P=0.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemany 2022</td>
<td>0.89 [0.51, 1.54]</td>
<td>0</td>
<td>0.42</td>
<td>0.67</td>
</tr>
<tr>
<td>Libster 2021</td>
<td>0.89 [0.51, 1.55]</td>
<td>0</td>
<td>0.42</td>
<td>0.67</td>
</tr>
<tr>
<td>O’Donnell 2021</td>
<td>0.71 [0.39, 1.29]</td>
<td>0</td>
<td>1.12</td>
<td>0.26</td>
</tr>
<tr>
<td>Simonovich 2021</td>
<td>0.79[0.37, 1.69]</td>
<td>0</td>
<td>0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>Van den Berg 2022</td>
<td>0.89[0.52, 1.52]</td>
<td>0</td>
<td>0.44</td>
<td>0.66</td>
</tr>
<tr>
<td>C: Hospitalization rate and overall effect RR (1.11 [0.33, 3.67], I²=92%, Z=0.16, P=0.87)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemany 2022</td>
<td>1.09 [0.17, 6.84]</td>
<td>94</td>
<td>0.09</td>
<td>0.93</td>
</tr>
<tr>
<td>Libster 2021</td>
<td>1.32[0.34, 5.18]</td>
<td>94</td>
<td>0.4</td>
<td>0.69</td>
</tr>
<tr>
<td>Simonovich 2021</td>
<td>0.67 [0.35, 1.26]</td>
<td>52</td>
<td>1.24</td>
<td>0.22</td>
</tr>
<tr>
<td>Sullivan 2021</td>
<td>1.55 [0.24, 5.76]</td>
<td>89</td>
<td>0.66</td>
<td>0.51</td>
</tr>
</tbody>
</table>
17. Subgroup Analysis

Subgroup analyses are performed based on age ≤ 60 years old or >60 years old. The subgroup analysis on mortality presented in Figure 5.1 indicates that CP infusion develops more beneficial reduction in mortality by 36% than that in the control group in ≤ 60 years old subgroup. The incidences of hospitalization and invasive mechanical ventilation remain their robustness whether ≤ 60 years old or >60 years old subgroup, indicating that CP infusion does not reduce the rates of hospitalization and invasive mechanical ventilation no matter ≤ 60 years old or >60 years old subgroup observed in Figure 5.2 and 5.3. CP infusion develops similar AEs compared with placebo regardless of ≤ 60 years old or >60 years old subgroup; although CP infusion can cause fewer serious AEs compared with control group in ≤ 60 years old subgroup than that in >60 years old subgroup recorded in Figure 5.4 and 5.5, there is no statistical difference in the incidence of serious AEs between the intervention group and the control groups whether ≤ 60 years old or >60 years old subgroup, which indicates that CP infusion possesses such remarkable safety.

![Figure 5.1](image1.png)

Figure 5.1: Forest plot of comparison of 28-day mortality in intervention group vs. control group.

![Figure 5.2](image2.png)

Figure 5.2: Forest plot of comparison of hospitalization rate in intervention group vs. control group.
18. Quality of Evidence and Strength of Recommendation

The quality of evidence on the CP infusion in COVID-19 patients is high level. Based on current information, a strong recommendation of CP infusion is made for patients with COVID-19 if necessary, especially for COVID-19 patients with ≤ 60 years old.

19. Discussion

As far as we know, this meta-analysis is the most all-round systematic review and meta-analysis, based on double-blind, parallel-arm, placebo-control, randomized clinical trials, to probe the efficacy and safety of CP infusion in patients with COVID-19. Because current SARS-CoV-2 with high infectivity has been endangering global healthcare all over the world since the late of 2019, a specific drug targeted to COVID-19 is not available yet. CP, as an alternative passive immunotherapy option, once has been recommended to apply for multiple infectious diseases for more than one hundred years. Multiple study results displayed that CP infusion could significantly decrease the mortality caused by SARS virus, MERS-CoV, influenza virus infection. However, due to the low certainty of evidence on the beneficial effects of CP infusion in COVID-19 patients, the present meta-analysis is performed.
to confirm its efficacy and safety for future clinical practice.

This meta-analysis identified and summarized up to 9 randomized, double-blind, parallel-arm, placebo-controlled, clinical trials. This meta-analysis based on data recorded above shows that CP infusion could significantly lower the mortality, and that the similar results on mortality mentioned above are consistent with the results from RCT14 and meta-analysis based on RCTs30, 31; but, some RCTs2, 15, 18, 25-29 did not support this conclusion. Therefore, although the conclusion is still controversial, the available evidence from this meta-analysis may provide a basis for an option of CP application for COVID-19 treatment until now. Secondary mortality caused by SARS-CoV-2 infection was reduced by CP transfusion, which might be attributable to such multiple complex known or unknown mechanisms of action as restraining complement activation, antagonizing cytokine effects, and down-regulating B- and T-cells functions5, and such other action mechanisms as controlling the attachment of the SARS-CoV-2 to angiotensin converting enzyme 2 receptors by strengthening neutralizing antibodies against the membrane spike protein of SARS-CoV-24 and the coupling of SARS-CoV-2 with its receptor by the IgG of anti-A isoagglutinin in O-type blood subjects6. Concrete and authentic mechanisms of action which are unclear yet need to be explored using more clinical trials and fundamental research on COVID-19.

Sensitivity analysis on mortality after deleting O’Donnell14 showed that there are significantly different effects before and after deleting O’Donnell, which indicated that CP infusion might make more severe or critical COVID-19 patients keep from death in the deleted study. And subgroup analysis on mortality based on age≤60 years old or >60 years old showed that CP therapy for patients in ≤60 years old sub group might be more efficacious than that in >60 years old subgroup, which hinted that onset age might be one of the commonest confounding factors which led to significant heterogeneities, which suggested that CP infusion might be an extremely good alternative option to reduce mortality for COVID-19 patients, the more so as COVID-19 patients are ≤60 years old, especially for COVID-19 patients aged less than 60 years old, might be more efficacious.

CP therapy for patients with COVID-19, especially for COVID-19 patients aged less than 60 years old, might be more efficacious in reducing mortality outcome and safer. CP infusion is strongly recommended in order to reduce the mortality in patients with COVID-19 if necessary, especially for COVID-19 patients with ≤60 years old, based on high quality of evidence.

20. Strength and Limitation

Our ongoing study has several strengths and limitations. Firstly, the main strength is that this meta-analysis deriving from high-quality randomized, double-blinded, placebo-control parallel-arm clinical trials is fewer biases and more high-quality; secondly, CP infusion can efficaciously and reasonably cut down the mortality outcome for COVID-19 patients, especially for COVID-19 patients with ≤60 years old. On limitations, this meta-analysis merely includes fewer eligible clinical trials and did not touch upon the optimal timing of infusion, titers and dosage of CP and the duration of administration, which can affect the efficacy and safety of CP transfusion. So, the optimal timing of infusion, dosage, titer of CP and duration of the administration still require more high-quality clinical trials to provide support.

21. Conclusions

CP therapy for patients with COVID-19, especially for COVID-19 patients aged less than 60 years old, might be more efficacious and less serious complications than those infected with COVID-19 without CP therapy. CP infusion may be an optional therapy for children and pregnant women according to the principle of extrapolation, if the COVID-19 illness cannot be held back.

22. Funding: CAMS Innovation Fund for Medical Sciences (CIFMS) 2021-I2M-1-001.
References

