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1. Abstract
1.1. Background: The observational link between microalbumin 
and type 2 diabetes (T2DM) is well established. However, it is 
uncertain if the link is causative. 

1.2. Methods: The current study performed Mendelian random-
ization (MR) on publicly accessible genome-wide association 
study (GWAS) summary data in order to investigate the causal 
linkages between microalbumin and T2DM. A single set of MR 
analyses was performed. As instrumental variables, a dataset of 
single nucleotide polymorphisms (SNPs) with significance value 
smaller than the genome-wide criteria (5*10-8) was employed.

1.3. Results: The results suggested that microalbumin had a causal 
influence on T2DM risk based on the 0.05 threshold. Microalbu-
min was shown to be positively linked with the risk of T2DM using 
the inverse variance weighted (IVW) technique (OR = 1.346, 95% 
CI, 1.062-1.706, P = 0.014). The weighted median MR estimations 
revealed that microalbumin was positively associated with the in-
cidence of T2DM (OR = 1.356, 95% CI, 1.038-1.771, P = 0.0254). 

1.4. Conclusions: The data showed that microalbumin may in-
crease the incidence of T2DM dependent on the genome-wide 
statistical significance level. This study supports the notion that 
microalbumin has a negative causal influence on T2DM risk.

2. Background 
The World Health Organization (WHO) describes diabetes melli-
tus as a long-term metabolic illness marked by high blood glucose 
levels that. As time goes by, it will also affect the heart, blood ves-
sels, eyes, kidneys, and nerves. Over 90% of patients of diabetes 
are T2DM, which is defined by tissue insulin resistance (IR) and 
inadequate compensatory insulin secretory response [1, 2]. The 
key causes of the T2DM pandemic, which has increased the fre-
quency and prevalence of T2DM, include the global rise in obesi-
ty, unhealthy lifestyles, high-calorie meals, and population aging 
[3, 4]. To deal with T2DM, early identification and diagnosis are 
essential.

Microalbuminuria, identified as the excretion of 20–200 mg/L of 
albumin in the urine [5], is a precursor to chronic renal disease 
(CKD). What’s more, it has been associated with a higher risk of 
cardiovascular disease, overall mortality, and metabolic diseases, 
such as type 2 diabetes mellitus (T2DM) [6-9]. Urinary microalbu-
min concentrations have been linked to metabolic diseases; epide-
miologic research shows that the prevalence of microalbuminuria 
is considerably greater in those with T2DM [10, 11]. To some ex-
tent, there were conflicting correlations among microalbuminuria 
and several T2DM components [12-15]. However, it is unclear if 
there is a causal connection between microalbumin and T2DM.

Abbreviations: 

T2DM: Diabetes mellitus type 2; MR: Mendelian randomization; SNPs: single nucleotide polymorphisms; IVW: inverse variance weighted; WHO: 
World Health Organization; IR: insulin resistance; CKD: chronic renal disease; GWAS: genome-wide association studies; MAF: minor allele frequen-
cy; LD: linkage disequilibrium
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A technique called Mendelian randomization (MR)[16] incorpo-
rates summary information from genome-wide association studies 
(GWAS), minimizing the impact of confounding variables. MR 
is a popular technique for determining if exposure and complex 
outcomes have any causal connections. To infer causation, the se-
lection of instrumental factors includes genetic variants that are 
closely related to exposure [17]. If the exposure is causal, the find-
ings will be impacted in line with the instrumental parameters that 
influence the exposure. The current investigation used MR to de-
termine whether there is a link between microalbumin and the risk 
of T2DM.

3. Materials and Methods
3.1. Sources of Data

SNPs associated to microalbumin were chosen as instrumental 
factors in a GWAS (https://gwas.mrcieu.ac.uk/) with 108706 sam-
ple size (GWAS ID: ukb-d-30500 irnt). We also use summary data 
from 122 GWAS for 80,154 people with T2DM and 853,816 con-
trols (effective sample size, 492,191) from five ancestry groups. 
Data is from a previous study [18].

The above quality check procedures were utilized to select appro-
priate indicator variables, ensuring the accuracy and validity of 
the findings on the causal link between microalbumin and T2DM 
risk. As instrumental factors, a collection of SNPs fewer than 
the genome-wide statistical significance criterion (5 × 10-8) was 
used. Second, for variations of interest, the minor allele frequency 
(MAF) criterion was 0.01. Third, the absence of linkage disequi-
librium (LD) among the selected explanatory variable is a crucial 
MR approach’s guiding principles, because significant LD might 
lead to biased conclusions. The clumping technique (R 2 < 0.001 
and clumping distance = 10,000kb) was used in the current in-
vestigation to analyze the degree of LD between the added SNPs. 
Fourth, confirming that the impacts of SNPs in exposure match to 
the similar genotype as the impacts on outcome is an essential part 
in MR. The explanatory variables wouldn’t contain palindromic 
SNPs, according to the concept. Fifth, where SNPs linked with 
exposure were missing from GWAS results, the surrogate SNPs 
with r 2 > 0.8 substantially related with the variants of interest 
were chosen.

3.2. The MR Presumptions

The MR technique needs to conform to three crucial presumptions 
in order to lessen the impact of bias on the outcomes. To begin 
with, explanatory variables that change exposure and outcome 
have no effect on explanatory factors. Second, the variations of 
interest should be strongly related with exposure in the study. The 
F value is frequently used to assess how strongly explanatory var-
iables and exposure relate to one another. F = R 2(n-k-1)/k(1-R 
2) is the formula for the F statistic. N is the sample size, k is the 
amount of explanatory variable, and R 2 is the treatment variance 
represented by the chosen SNPs. The relationship between explan-

atory variable and exposure is poor when F value is lower than 10. 
Third, there is no vertical pleiotropy impact among explanatory 
variables and outcomes because instrumental factors only affect 
outcomes through exposure.

3.3. MR Predictions

For the research at hand, elevated methods such as inverse vari-
ance weighted (IVW), MR-Egger, weighted median, and weighted 
mode were utilized to determine if microalbumin had a causal in-
fluence on T2DM risk. To create an overall estimate of the influ-
ence of microalbumin on T2DM risk, IVW simply converts the 
outcome impacts of explanatory variable on exposure effects to a 
weighted regression, with the intercept set to zero [19]. In the ab-
sence of vertical pleiotropy, IVW could produce estimates that are 
free from confounding factors.666 Outlying genetic factors may 
have a considerable impact on MR-Egger, resulting in incorrect 
estimations. The MR-Egger method can still produce accurate es-
timates even if all of the selected explanatory factors are wrong. 
The weighted median could produce precise predictions of the 
causality relationship even if up to 50% of the study’s data came 
from false explanatory factors. Because it enhances the accuracy 
of the findings, compared to the MR-Egger technique, the weight-
ed median approach has a number of important benefits. When the 
majority of explanatory variables have identical causal estimates, 
Despite the fact that other explanatory variables don’t really match 
the MR method’s conditions for interpretation, the weighted mode 
approach remains viable [20].

To determine if the contained SNPs had any vertical pleiotropic 
impacts, the MR-Egger regression was performed. A technique 
called MR-Egger regression uses pleiotropy detection and correc-
tion to evaluate the causal influence of MR analysis [21] and to 
establish if directed vertical pleiotropy is the cause of the results 
[22]. Due to the reduced reliability and confidence interval of MR-
Egger regression, Mendelian randomization pleiotropy residual 
sum was used to identify any outliers that would reflect potential 
pleiotropic bias and rectify vertical pleiotropy. In addition, in order 
to assess the degree of heterogeneity from among selected SNPs, 
Cochran’s Q statistic was used. R program was used for statistical 
analysis (R version 4.0.2, TwoSampleMR package).

4. Results
When T2DM was used as the result, microalbumin was found 
to be causally related to T2DM, as demonstrated in Table 1 and 
Figures 1 and 2. Microalbumin (odds ratio (OR) = 1.346, 95% 
confidence interval (CI), 1.062-1.706, P = 0.014) was shown to be 
positively linked with the risk of T2DM in IVW analysis (Table 1). 
The weighted median MR estimations revealed that microalbumin 
(OR = 1.356, 95% CI, 1.038-1.771, P = 0.0254) was a risk factor 
for T2DM (Table 1). The comprehensive statistical findings of the 
microalbumin were reported in Supplementary Table 1. To test for 
vertical pleiotropy between explanatory variable and result, MR-
Egger regression was utilized. and the findings revealed that no 



http://www.acmcasereport.com/                                                                                                                                                                                                                                3

Volume 10 Issue 20 -2023                                                                                                                                                                                                  Research Article

indication of vertical pleiotropy was found (P = 0.736). Further-
more, Statistics from Cochrane Q showed no discernible hetero-
geneity (P = 0.703), and there was no mild explanatory variable 
bias, according to the F values of the SNPs, which were all more 

than 10 (Table 2). Table 2 contains extensive information on the 
instrumental factors. Thus, the MR estimations discovered that mi-
croalbumin was positively associated to the probability of T2DM.

Figure 1: MR results of causal links between microalbumin and T2DM.

Figure 2: MR results of causal links between microalbumin and T2DM.

Table 1: MR results of causal links between microalbumin and T2DM.

method nsnp b se pval lo_ci up_ci or or_lci95 or_uci95

MR Egger 3 0.39932 0.261846 0.369489 -0.1139 0.912538 1.490811 0.89235 2.490635

Weighted median 3 0.304668 0.1363 0.025399 0.03752 0.571815 1.356174 1.038233 1.77148

Inverse variance weighted 3 0.297119 0.120968 0.014042 0.060022 0.534216 1.345975 1.06186 1.70611

Simple mode 3 0.276472 0.173746 0.252538 -0.06407 0.617013 1.31847 0.93794 1.853384

Weighted mode 3 0.335793 0.161095 0.172482 0.020047 0.651538 1.399049 1.02025 1.91849

Table 2: SNPs used as instrumental variables from microalbumin and T2DM GWASs.

SNP chr pos effect_
allele

other_
allele

beta.
exposure

beta.
outcome se.exposure se.

outcome
pval.

exposure
pval.

outcome
eaf.

exposure R2 Fvalue

rs116867125 10 17033504 A G 0.098354 0.0268 0.015188 0.0251 9.48E-11 0.2862 0.020059 0.00038 41.32461

rs6665323 1 47953054 C T 0.026458 0.0049 0.00441 0.0066 1.98E-09 0.4576 0.622863 0.000329 35.73879

rs74942409 10 16928301 C T 0.063186 0.0225 0.006658 0.0104 2.34E-21 0.02996 0.114877 0.000812 88.1885
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5. Discussion
The MR method was used in this study to investigate the causal 
relationship between T2DM and microalbumin using GWAS sum-
mary-level data. The primary analyses discovered evidence that 
genetically predicted T2DM was linked to microalbumin levels. It 
also suggested that microalbumin was related to the risk of T2DM.

Because of the increased proportion of microvascular complica-
tions associated with diabetes, such as diabetic nephropathy, the 
amount of diabetics with end-stage renal disease (ESRD) will rise 
sharply [23]. As a result, diabetes, particularly type 2 diabetes, 
is increasingly becoming the primary cause for patients to begin 
renal replacement treatment [24, 25].On average, 20-40% of di-
abetic people will have renal impairment [26]. Microalbuminuria 
is frequently the initial symptom of renal dysfunction, indicating 
the presence of overt nephropathy [27]. As a result, urine albu-
min measurement is frequently employed as a sensitive diagnostic 
and predictor of ESRD in diabetic patients [28]. Microalbuminuria 
and other risk factors linked with this illness must be monitored 
in order to avoid or postpone overt nephropathy [29]. The gold 
standard is microalbuminuria measurement in a 24-hour urine col-
lection [30]. Furthermore, even within the normal range, the uri-
nary microalbumin-to-urine creatinine ratio (UACR) is a signifi-
cant predictor of diabetic nephropathy and an important risk factor 
for cardiovascular disease, and it shows endothelial dysfunction in 
DM [31, 32].

A recent study discovered that people with excessive urine mi-
croalbumin concentrations had a considerably greater risk of de-
veloping T2DM [33]. Furthermore, there were favorable relation-
ships between microalbumin concentrations and various metabolic 
syndrome components, such as hypertension and hyperglycemia. 
Urinary microalbumin concentration increases of 10 mg/L were 
linked to a 10% increase in the incidence of T2DM [33]. Microal-
bumin levels below the threshold for microalbuminuria might sub-
stantially predict the risk of cardiometabolic problems [34]. The 
NHANES study discovered a connection among microalbuminu-
ria and the possibility of hypertension and hyperglycemia [35]. 
The risk of developing T2DM was shown to be 1.90 (95% CI = 
0.88-4.06) in an 11-year follow-up of 882 people aged 20 to 74, for 
those with microalbuminuria and 2.51 (95% CI = 1.08-5.87) for 
those with macroalbuminuria, respectively [36]. Microalbuminu-
ria affects roughly 20-40% of diabetes individuals in various pop-
ulations [37-39], This might be a precursor to diabetic nephrop-
athy and other diabetes problems. To prevent future difficulties, 
adequate screening programs and tight control of modifiable risk 
factors are required. These outcomes matched the findings of the 
current investigation. 

However, the fundamental processes linking urine microalbumin 
levels to the development of metabolic diseases are not entirely 
understood. Microalbuminuria is most commonly associated with 
vascular injury and endothelial dysfunction [40], culminating in 

type 2 diabetes [41]. On the other hand, the metabolic syndrome 
Endothelial permeability and intraglomerular capillary pressure 
may be increased by factors such abdominal obesity, hypertension, 
or hyperglycemia, which can cause kidney failure and microalbu-
minuria [42]. Thus, the mechanisms through which microalbumin 
has a negative impact on T2DM need to be investigated further.

Diabetic nephropathy can be used to investigate the mechanism of 
microalbumin’s negative influence on T2DM. Despite the convo-
luted pathophysiology of diabetic nephropathy, podocyte damage 
has been recognized as being critical [43]. Podocyte structural al-
terations or destruction are linked to kidney injury, culminating in 
proteinuria and severe renal insufficiency, finally leading to dia-
betic nephropathy [44]. Furthermore, defective podocytes result 
in poor selective glomerular filtration and contribute to proteinuria 
development [45]. Meanwhile, the continuous hyperglycemia-in-
duced formation of reactive oxygen species (ROS) would ulti-
mately harm the antioxidant defense system, triggering oxidative 
stress (OS) and inflammatory reactions [46].

For many years, a role for inflammation in the development of 
T2DM has been hypothesized based on the reported associations 
between higher concentrations of inflammatory biomarkers such 
as CRP and interleukin-6 (IL-6) and T2DM risk [47]. A large MR 
research with CHD as the major outcome found that a functional 
variation causing defective signaling at the IL-6 receptor had a 
substantial influence on reduced T2DM risk [48]. However, in a 
comprehensive GWA meta-analysis, the same functional variation 
was found to be unrelated to T2DM risk [49]. Although the inflam-
matory theory in T2DM pathogenesis looks feasible, data from 
magnetic resonance imaging studies has yet to support it. How-
ever, bigger trials and investigations into additional inflammatory 
pathways may provide different results.

The application of the MR technique reduced inverse causality and 
confounding factors’ influence with the findings, which may make 
them more credible than results from epidemiological studies. To 
the greatest of our knowledge, this study offers the first MR anal-
ysis of this problem. There must be some restrictions mentioned, 
though. First, we were incapable of identify whether individuals 
who participated in the GWAS used in the MR investigations co-
incided. Nonetheless, the F statistic has the potential to reduce the 
departure from participant overlap [50]. Second, using a rigorous 
various testing adjustment would have been overly conservative 
given the biologic validity and the cross statistical technique, po-
tentially omitting possible causal factors for T2DM. As a result, 
We neglected to take repeated testing into consideration. Third, the 
findings of the research may not be generalizable to other ethnic 
groups because the most of GWAS volunteers were of European 
heritage. 

6. Conclusions
In conclusion, our MR investigation reveals that microalbumin has 
a causal influence on T2DM. It may hold promise for the preven-
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tion and treatment of type 2 diabetes.
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